|
import gradio as gr
|
|
import numpy as np
|
|
from tensorflow.keras.models import load_model
|
|
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
|
from sklearn.preprocessing import StandardScaler
|
|
import json
|
|
import re
|
|
from konlpy.tag import Okt
|
|
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
|
import pickle
|
|
|
|
|
|
model = load_model('deep_learning_model(okt_drop).h5', compile=False)
|
|
|
|
with open('tokenizer(okt_drop).json', 'r', encoding='utf-8') as f:
|
|
tokenizer_data = f.read()
|
|
|
|
tokenizer = tokenizer_from_json(tokenizer_data)
|
|
|
|
with open('scaler.pkl', 'rb') as f:
|
|
scaler = pickle.load(f)
|
|
|
|
def calculate_sentence_stats(paragraph):
|
|
paragraph = re.sub(r'\.{2,}', '.', paragraph)
|
|
sentences = re.split(r'[.!?]', paragraph)
|
|
sentence_lengths = [len(s.strip()) for s in sentences if s.strip()]
|
|
sentence_count = len(sentence_lengths)
|
|
average_length = sum(sentence_lengths) / len(sentence_lengths) if sentence_lengths else 0
|
|
return sentence_count, average_length
|
|
|
|
def process_text(text):
|
|
okt = Okt()
|
|
texts = ' '.join(okt.nouns(text))
|
|
sequences = tokenizer.texts_to_sequences([texts])
|
|
max_len = 301
|
|
X = pad_sequences(sequences, maxlen=max_len)
|
|
return X
|
|
|
|
def predict_text(text, grade):
|
|
X = process_text(text)
|
|
sentence_count, sentence_average = calculate_sentence_stats(text)
|
|
length = len(text)
|
|
emoticon = 0
|
|
numeric_features = np.array([[int(grade), length, emoticon, sentence_count, sentence_average]])
|
|
numeric_features = scaler.transform(numeric_features)
|
|
prediction = model.predict([X, numeric_features])
|
|
predicted_label = 'μΈκ³΅μ§λ₯μ΄ μμ±ν λ
μκ°μλ¬Έμ
λλ€.' if prediction[0][0] > 0.5 else 'μ¬λμ΄ μμ±ν λ
μκ°μλ¬Έμ
λλ€.'
|
|
return predicted_label
|
|
|
|
iface = gr.Interface(
|
|
fn=predict_text,
|
|
inputs=[gr.Textbox(lines=10, placeholder="Enter Text Here..."), gr.Textbox(label="Grade")],
|
|
outputs="text",
|
|
title="λ
μκ°μλ¬Έ λΆμκΈ°",
|
|
description="μ΄ λ
μκ°μλ¬Έμ΄ νμμ μν΄ μμ±λμλμ§, μΈκ³΅μ§λ₯μ μν΄ μμ±λμλμ§ λΆμν©λλ€."
|
|
)
|
|
iface.launch(debug=True)
|
|
|