File size: 7,436 Bytes
e29d600 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# ───────────────────────────────────────────────────────────
# app.py – Gradio Space: Text ➜ 2D (Kontext) ➜ 3D (Hunyuan3D)
# -----------------------------------------------------------
# Requirements (add to requirements.txt):
# torch>=2.2.0
# diffusers>=0.27.0
# hy3dgen # Hunyuan3D official PyPI after Jan‑2025
# trimesh
# gradio==4.26.0
# pillow
# -----------------------------------------------------------
# NOTE: • Set the following secrets in the Space **Settings → Secrets**
# HF_TOKEN – your Hugging Face access token (for gated models)
# BFL_API_KEY – optional, required if using Black‑Forest Labs usage tracking
# • GPU (A10G/16 GB↑) is strongly recommended.
# • Hunyuan3D installs a CUDA‑based custom rasteriser at runtime; build
# wheels are provided on Linux/Windows. See model card instructions.
# ---------------------------------------------------------------------------
import os
import tempfile
from typing import List, Tuple
import gradio as gr
import torch
from PIL import Image
from huggingface_hub import login as hf_login
# ─────────── Login / device ───────────
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
hf_login(token=HF_TOKEN, add_to_git_credential=False)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
# ─────────── Load FLUX .1 Kontext (2D) ───────────
from diffusers import FluxKontextPipeline, FluxPipeline # FluxPipeline = text‑to‑image variant
print("[+] Loading FLUX.1 Kontext [dev] …")
kontext_pipe = FluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=DTYPE
).to(DEVICE)
kontext_pipe.set_progress_bar_config(disable=True)
print("[+] Loading FLUX.1 [dev] (text‑to‑image) …")
text2img_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", torch_dtype=DTYPE
).to(DEVICE)
text2img_pipe.set_progress_bar_config(disable=True)
# ─────────── Load Hunyuan3D‑2 (3D) ───────────
print("[+] Loading Hunyuan3D‑2 shape+texture … (this may take a while)")
from hy3dgen.shapegen import Hunyuan3DDiTFlowMatchingPipeline
from hy3dgen.texgen import Hunyuan3DPaintPipeline
shape_pipe = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
"tencent/Hunyuan3D-2", torch_dtype=DTYPE
).to(DEVICE)
shape_pipe.set_progress_bar_config(disable=True)
paint_pipe = Hunyuan3DPaintPipeline.from_pretrained(
"tencent/Hunyuan3D-2", torch_dtype=DTYPE
).to(DEVICE)
paint_pipe.set_progress_bar_config(disable=True)
# ───────────────────────────────────────────────
# Helper functions
# ───────────────────────────────────────────────
def generate_single_2d(prompt: str, image: Image.Image | None, guidance_scale: float) -> Image.Image:
"""Either edit an existing image via Kontext or generate a fresh one via Flux text2img."""
if image is None:
result = text2img_pipe(prompt=prompt, guidance_scale=guidance_scale).images[0]
else:
result = kontext_pipe(image=image, prompt=prompt, guidance_scale=guidance_scale).images[0]
return result
def generate_multiview(prompt: str, base_image: Image.Image, guidance_scale: float) -> List[Image.Image]:
"""Generate four canonical views (front / back / left / right) by re‑prompting Kontext."""
views = [
("front view", base_image),
(
"left side view",
kontext_pipe(image=base_image, prompt=f"{prompt}, left side view", guidance_scale=guidance_scale).images[0],
),
(
"right side view",
kontext_pipe(image=base_image, prompt=f"{prompt}, right side view", guidance_scale=guidance_scale).images[0],
),
(
"back view",
kontext_pipe(image=base_image, prompt=f"{prompt}, back view", guidance_scale=guidance_scale).images[0],
),
]
# Return only images, keep order [front, left, right, back]
return [v[1] for v in views]
def build_3d_mesh(prompt: str, images: List[Image.Image]) -> str:
"""Call Hunyuan3D pipelines to build geometry then paint texture. Returns path to GLB."""
# For single‑view use first image; multi‑view (≤6) accepted by Hunyuan3D
single_or_multi = images if len(images) > 1 else images[0]
mesh = shape_pipe(image=single_or_multi, prompt=prompt)[0]
mesh = paint_pipe(mesh, image=single_or_multi)
tmpdir = tempfile.mkdtemp()
out_path = os.path.join(tmpdir, "mesh.glb")
mesh.export(out_path) # trimesh export
return out_path
# ─────────── Gradio interface ───────────
CSS = """
footer {visibility: hidden;}
"""
def workflow(prompt: str, input_image: Image.Image | None, multiview: bool, guidance_scale: float) -> Tuple[List[Image.Image], str, str]:
"""Main inference wrapper."""
if not prompt:
raise gr.Error("프롬프트(설명)를 입력하세요 📌")
# 1️⃣ 2D Generation / Editing
base_img = generate_single_2d(prompt, input_image, guidance_scale)
images = [base_img]
if multiview:
images = generate_multiview(prompt, base_img, guidance_scale)
# 2️⃣ 3D Generation
model_path = build_3d_mesh(prompt, images)
return images, model_path, model_path # gallery, viewer, file download
def build_ui():
with gr.Blocks(css=CSS, title="Text ➜ 2D ➜ 3D (Kontext × Hunyuan3D)") as demo:
gr.Markdown("# 🌀 텍스트 → 2D → 3D 생성기")
gr.Markdown(
"Kontext로 일관된 2D 이미지를 만든 뒤, Hunyuan3D‑2로 텍스처 3D 메시에스를 생성합니다.\n"
"⏱️ 첫 실행은 모델 로딩으로 시간이 걸립니다."
)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="프롬프트 / 설명", placeholder="예: 파란 모자를 쓴 귀여운 로봇")
input_image = gr.Image(label="(선택) 편집할 참조 이미지", type="pil")
multiview = gr.Checkbox(label="멀티뷰(좌/우/후면 포함) 3D 품질 향상", value=True)
guidance = gr.Slider(0.5, 7.5, 2.5, step=0.1, label="Guidance Scale (Kontext)")
run_btn = gr.Button("🚀 생성하기", variant="primary")
with gr.Column():
gallery = gr.Gallery(label="🎨 2D 결과", show_label=True, columns=2, height="auto")
model3d = gr.Model3D(label="🧱 3D 미리보기", clear_color=[1, 1, 1, 0])
download = gr.File(label="⬇️ GLB 다운로드")
run_btn.click(
fn=workflow,
inputs=[prompt, input_image, multiview, guidance],
outputs=[gallery, model3d, download],
api_name="generate",
scroll_to_output=True,
show_progress="full",
)
return demo
if __name__ == "__main__":
build_ui().queue(max_size=3, concurrency_count=1).launch()
|