File size: 8,438 Bytes
7591227 cc80057 7591227 e29d600 cc80057 e29d600 7591227 e29d600 7591227 e29d600 7771b9f cc80057 7771b9f e29d600 7591227 e29d600 7591227 cc80057 7591227 cc80057 7591227 cc80057 7591227 cc80057 7591227 cc80057 7591227 35cddec 7591227 cc80057 7591227 cc80057 7591227 cc80057 7591227 35cddec 7591227 cc80057 7591227 cc80057 7591227 35cddec 7591227 cc80057 7591227 e29d600 7591227 35cddec 7591227 cc80057 7591227 e29d600 cc80057 e29d600 cc80057 e29d600 7591227 cc80057 e29d600 cc80057 7591227 cc80057 7591227 e29d600 cc80057 7591227 cc80057 e29d600 7591227 e29d600 7591227 e29d600 7591227 e29d600 7591227 e29d600 7591227 e29d600 7591227 cc80057 e29d600 7591227 e29d600 7591227 e29d600 a6a8969 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# ────────────────────────────────────────────────────────────────────────────
# app.py – Text ➜ 2D (FLUX-mini Kontext-dev) ➜ 3D (Hunyuan3D-2)
# • Fits into ≈16 GB system RAM: lightweight models + lazy loading + offload
# • 2025-07-07: fixed repo names, added HF token + trust_remote_code, cleaned logs
# ────────────────────────────────────────────────────────────────────────────
import os
import tempfile
from typing import List
import gradio as gr
import torch
from PIL import Image
from huggingface_hub import login
# ─────────────────────── Auth ───────────────────────
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise RuntimeError(
"HF_TOKEN이 설정되지 않았습니다. Space Settings → Secrets에서 "
"HF_TOKEN=<your_read_token> 을 등록한 뒤 재시작하세요."
)
login(token=HF_TOKEN, add_to_git_credential=False)
# ─────────────────────── Device & dtype ───────────────────────
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
# ─────────────────────── Lazy loaders ───────────────────────
from diffusers import FluxKontextPipeline, FluxPipeline
# Global caches
kontext_pipe: FluxKontextPipeline | None = None
_text2img_pipe: FluxPipeline | None = None
shape_pipe = None
paint_pipe = None
# Repository names (공개 버전)
MINI_KONTEXT_REPO = "black-forest-labs/FLUX.1-Kontext-dev" # 이미지 편집/확장용
MINI_T2I_REPO = "black-forest-labs/FLUX.1-schnell" # 텍스트→이미지(4-step distilled)
HUNYUAN_REPO = "tencent/Hunyuan3D-2" # 3D shape & paint
DEVICE_MAP_STRATEGY = "balanced" # "auto"(offload) 미지원, so use "balanced"
# ──────────────────────────── Loaders ────────────────────────────
def load_kontext() -> FluxKontextPipeline:
"""Lazy-load FLUX.1-Kontext-dev (image-to-image editing)."""
global kontext_pipe
if kontext_pipe is None:
print("[+] Loading FLUX.1-Kontext-dev … (balanced offload)")
kontext_pipe = FluxKontextPipeline.from_pretrained(
MINI_KONTEXT_REPO,
torch_dtype=DTYPE,
device_map=DEVICE_MAP_STRATEGY,
low_cpu_mem_usage=True,
token=HF_TOKEN,
trust_remote_code=True,
)
kontext_pipe.set_progress_bar_config(disable=True)
return kontext_pipe
def load_text2img() -> FluxPipeline:
"""Lazy-load FLUX.1-schnell (text-to-image)."""
global _text2img_pipe
if _text2img_pipe is None:
print("[+] Loading FLUX.1-schnell (text→image)…")
_text2img_pipe = FluxPipeline.from_pretrained(
MINI_T2I_REPO,
torch_dtype=DTYPE,
device_map=DEVICE_MAP_STRATEGY,
low_cpu_mem_usage=True,
token=HF_TOKEN,
trust_remote_code=True,
)
_text2img_pipe.set_progress_bar_config(disable=True)
return _text2img_pipe
def load_hunyuan():
"""Lazy-load Hunyuan3D-2 shape & texture pipelines."""
global shape_pipe, paint_pipe
if shape_pipe is None or paint_pipe is None:
print("[+] Loading Hunyuan3D-2 (shape & texture)…")
from hy3dgen.shapegen import Hunyuan3DDiTFlowMatchingPipeline
from hy3dgen.texgen import Hunyuan3DPaintPipeline
shape_pipe = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
HUNYUAN_REPO,
torch_dtype=DTYPE,
device_map=DEVICE_MAP_STRATEGY,
low_cpu_mem_usage=True,
token=HF_TOKEN,
trust_remote_code=True,
)
shape_pipe.set_progress_bar_config(disable=True)
paint_pipe = Hunyuan3DPaintPipeline.from_pretrained(
HUNYUAN_REPO,
torch_dtype=DTYPE,
device_map=DEVICE_MAP_STRATEGY,
low_cpu_mem_usage=True,
token=HF_TOKEN,
trust_remote_code=True,
)
paint_pipe.set_progress_bar_config(disable=True)
return shape_pipe, paint_pipe
# ───────────────────────────── Helpers ─────────────────────────────
def generate_single_2d(prompt: str, image: Image.Image | None, guidance_scale: float) -> Image.Image:
"""Generate a single 2D image (txt2img or img2img)."""
if image is None:
t2i = load_text2img()
return t2i(prompt=prompt, guidance_scale=guidance_scale).images[0]
kontext = load_kontext()
return kontext(image=image, prompt=prompt, guidance_scale=guidance_scale).images[0]
def generate_multiview(prompt: str, base_image: Image.Image, guidance_scale: float) -> List[Image.Image]:
"""Generate 4-view images for better 3D reconstruction."""
kontext = load_kontext()
return [
base_image,
kontext(image=base_image, prompt=f"{prompt}, left side view", guidance_scale=guidance_scale).images[0],
kontext(image=base_image, prompt=f"{prompt}, right side view", guidance_scale=guidance_scale).images[0],
kontext(image=base_image, prompt=f"{prompt}, back view", guidance_scale=guidance_scale).images[0],
]
def build_3d_mesh(prompt: str, images: List[Image.Image]) -> str:
"""Create GLB mesh from single or multi-view images."""
shape, paint = load_hunyuan()
source = images if len(images) > 1 else images[0]
mesh = shape(image=source, prompt=prompt)[0]
mesh = paint(mesh, image=source) # texture painting
tmpdir = tempfile.mkdtemp()
out_path = os.path.join(tmpdir, "mesh.glb")
mesh.export(out_path)
return out_path
# ──────────────────────────────── UI ────────────────────────────────
CSS = """footer {visibility:hidden;}"""
def workflow(prompt: str, input_image: Image.Image | None, multiview: bool, guidance_scale: float):
if not prompt:
raise gr.Error("프롬프트(설명)를 입력하세요 📌")
base_img = generate_single_2d(prompt, input_image, guidance_scale)
images = generate_multiview(prompt, base_img, guidance_scale) if multiview else [base_img]
model_path = build_3d_mesh(prompt, images)
return images, model_path, model_path
def build_ui():
with gr.Blocks(css=CSS, title="Text ➜ 2D ➜ 3D (mini)") as demo:
gr.Markdown("# 🌀 텍스트 → 2D → 3D 생성기 (경량 버전)")
gr.Markdown("Kontext-dev + Hunyuan3D-2. 16 GB RAM에서도 동작합니다.")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="프롬프트 / 설명", placeholder="예: 파란 모자를 쓴 귀여운 로봇")
input_image = gr.Image(label="(선택) 편집할 참조 이미지", type="pil")
multiview = gr.Checkbox(label="멀티뷰(좌/우/후면 포함)", value=True)
guidance = gr.Slider(0.5, 7.5, 2.5, step=0.1, label="Guidance Scale")
run_btn = gr.Button("🚀 생성하기", variant="primary")
with gr.Column():
gallery = gr.Gallery(label="🎨 2D 결과", columns=2, height="auto")
model3d = gr.Model3D(label="🧱 3D 미리보기", clear_color=[1, 1, 1, 0])
download = gr.File(label="⬇️ GLB 다운로드")
run_btn.click(
fn=workflow,
inputs=[prompt, input_image, multiview, guidance],
outputs=[gallery, model3d, download],
api_name="generate",
scroll_to_output=True,
show_progress="full",
)
return demo
if __name__ == "__main__":
build_ui().queue(max_size=3).launch()
|