File size: 11,376 Bytes
5845270
e69d279
 
19bcaa7
aabfbe0
 
e69d279
07c838c
19bcaa7
 
76813dd
19bcaa7
08f5d28
e69d279
 
 
b0c8c02
827b490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b421e
b0c8c02
 
 
07c838c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0c8c02
98c7793
b6b421e
6894e88
b0c8c02
 
98c7793
5428aaf
 
48cc831
5428aaf
 
b0c8c02
16d258e
69e268f
 
16d258e
 
 
 
 
 
69e268f
 
 
5428aaf
 
 
 
 
 
 
6894e88
e69d279
 
5428aaf
 
 
827b490
 
 
b6b421e
98c7793
 
 
 
 
 
 
 
 
5428aaf
 
 
 
 
 
 
48cc831
5428aaf
48cc831
 
 
 
 
 
 
5428aaf
98c7793
 
5428aaf
 
 
 
e69d279
 
 
 
 
 
 
 
 
 
 
 
 
 
276236e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6894e88
276236e
 
 
 
 
 
 
6894e88
276236e
 
 
 
 
08f5d28
276236e
 
 
 
 
 
 
 
 
 
08f5d28
276236e
 
 
 
 
 
aabfbe0
 
e69d279
276236e
 
 
 
 
 
e69d279
 
276236e
 
 
 
 
 
 
 
 
e69d279
aabfbe0
276236e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e69d279
276236e
 
 
 
e69d279
276236e
e69d279
276236e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e69d279
6894e88
276236e
 
 
 
 
 
 
 
 
 
 
 
 
6894e88
276236e
e69d279
276236e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import gradio as gr
import numpy as np
import random
import os
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline, AutoTokenizer
from huggingface_hub import login

hf_token = os.getenv("hf_token")
login(token=hf_token)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

_text_gen_pipeline = None
_image_gen_pipeline = None

@spaces.GPU()
def get_image_gen_pipeline():
    global _image_gen_pipeline
    if _image_gen_pipeline is None:
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            dtype = torch.bfloat16
            _image_gen_pipeline = DiffusionPipeline.from_pretrained(
                "black-forest-labs/FLUX.1-schnell",
                torch_dtype=dtype
            ).to(device)
        except Exception as e:
            print(f"Error loading image generation model: {e}")
            return None
    return _image_gen_pipeline

@spaces.GPU()
def get_text_gen_pipeline():
    global _text_gen_pipeline
    if _text_gen_pipeline is None:
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            tokenizer = AutoTokenizer.from_pretrained(
                "mistralai/Mistral-7B-Instruct-v0.3",
                use_fast=True  # Ensure fast tokenizer
            )
            _text_gen_pipeline = pipeline(
                "text-generation",
                model="mistralai/Mistral-7B-Instruct-v0.3",
                tokenizer=tokenizer,
                max_new_tokens=2048,
                device=device,
            )
        except Exception as e:
            print(f"Error loading text generation model: {e}")
            return None
    return _text_gen_pipeline

@spaces.GPU()
def refine_prompt(prompt):
    text_gen = get_text_gen_pipeline()
    if text_gen is None:
        return "Text generation model is unavailable."
    try:
        messages = [
            {"role": "system", "content": "Vous êtes un designer produit avec de solides connaissances dans la génération de texte en image. Vous recevrez une demande de produit sous forme de description succincte, et votre mission sera d'imaginer un nouveau design de produit répondant à ce besoin.\n\nLe réponse générée sera exclusivement un prompt pour une IA de texte to image (Flux).\n\nCe prompt devra inclure une description visuelle de l'objet doit être une stricte description de produit, sans narration, et ne doit pas dépasser 2048 jetons.\nVous devez aussi explicitement mentionner les caractéristiques esthétiques visuelles du rendu image (ex : photoréaliste, haute qualité, focale, etc.). Le fond de l'image générée doit être entièrement blanc."},
            {"role": "user", "content": prompt},
        ]
        refined_prompt = text_gen(messages)
        
        # Extract just the assistant's content from the response
        try:
            messages = refined_prompt[0]['generated_text']
            # Find the last message with role 'assistant'
            assistant_messages = [msg for msg in messages if msg['role'] == 'assistant']
            if not assistant_messages:
                return "Error: No assistant response found"
            assistant_content = assistant_messages[-1]['content']
            return assistant_content
        except (KeyError, IndexError):
            return "Error: Unexpected response format from the model"
    except Exception as e:
        return f"Error refining prompt: {str(e)}"

def validate_dimensions(width, height):
    if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE:
        return False, "Image dimensions too large"
    return True, None

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    try:
        progress(0, desc="Starting generation...")
        
        pipe = get_image_gen_pipeline()
        if pipe is None:
            return None, "Image generation model is unavailable."
        
        # Validate that prompt is not empty
        if not prompt or prompt.strip() == "":
            return None, "Please provide a valid prompt."

        # Validate width/height dimensions
        is_valid, error_msg = validate_dimensions(width, height)
        if not is_valid:
            return None, error_msg

        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
        
        progress(0.2, desc="Setting up generator...")
        generator = torch.Generator().manual_seed(seed)
        
        progress(0.4, desc="Generating image...")
        with torch.autocast('cuda'):
            image = pipe(
                prompt=prompt, 
                width=width,
                height=height,
                num_inference_steps=num_inference_steps, 
                generator=generator,
                guidance_scale=5.0,
                max_sequence_length=2048
            ).images[0]

        torch.cuda.empty_cache()  # Clean up GPU memory after generation
        progress(1.0, desc="Done!")
        return image, seed
    except Exception as e:
        return None, f"Error generating image: {str(e)}"
 
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

def preload_models():
    print("Préchargement des modèles...")
    try:
        # Préchargement du modèle de génération de texte
        device = "cuda" if torch.cuda.is_available() else "cpu"
        tokenizer = AutoTokenizer.from_pretrained(
            "mistralai/Mistral-7B-Instruct-v0.3",
            use_fast=True
        )
        global _text_gen_pipeline
        _text_gen_pipeline = pipeline(
            "text-generation",
            model="mistralai/Mistral-7B-Instruct-v0.3",
            tokenizer=tokenizer,
            max_new_tokens=2048,
            device=device,
        )
        
        # Préchargement du modèle de génération d'images
        dtype = torch.bfloat16
        global _image_gen_pipeline
        _image_gen_pipeline = DiffusionPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-schnell",
            torch_dtype=dtype
        ).to(device)
        
        print("Modèles préchargés avec succès!")
        return True
    except Exception as e:
        print(f"Erreur lors du préchargement des modèles: {str(e)}")
        return False

def create_interface():
    # Préchargement des modèles
    models_loaded = preload_models()
    
    if not models_loaded:
        model_status = "⚠️ Erreur lors du chargement des modèles"
    else:
        model_status = "✅ Modèles chargés avec succès!"

    with gr.Blocks(css=css) as demo:
        
        info = gr.Info(model_status)

        with gr.Column(elem_id="col-container"):
            gr.Markdown(f"""# Text to Product
            Using Mistral + Flux + Trellis
            """)
            
            with gr.Row():
                
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                
                prompt_button = gr.Button("Refine prompt", scale=0)
            
            refined_prompt = gr.Text(
                label="Refined Prompt", 
                show_label=False,
                max_lines=10, 
                placeholder="Prompt refined by Mistral", 
                container=False,
                max_length=2048,
                )
            
            
            run_button = gr.Button("Create visual", scale=0)

            generated_image = gr.Image(label="Generated Image", show_label=False)
            
            with gr.Accordion("Advanced Settings Mistral", open=False):
                gr.Slider(
                    label="Temperature",
                    value=0.9,
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    interactive=True,
                    info="Higher values produce more diverse outputs",
                ),
                gr.Slider(
                    label="Max new tokens",
                    value=256,
                    minimum=0,
                    maximum=1048,
                    step=64,
                    interactive=True,
                    info="The maximum numbers of new tokens",
                ),
                gr.Slider(
                    label="Top-p (nucleus sampling)",
                    value=0.90,
                    minimum=0.0,
                    maximum=1,
                    step=0.05,
                    interactive=True,
                    info="Higher values sample more low-probability tokens",
                ),
                gr.Slider(
                    label="Repetition penalty",
                    value=1.2,
                    minimum=1.0,
                    maximum=2.0,
                    step=0.05,
                    interactive=True,
                    info="Penalize repeated tokens",
                )
            
            with gr.Accordion("Advanced Settings Flux", open=False):
                
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                
                with gr.Row():
                    
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                    
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                
                with gr.Row():
                    
      
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=4,
                    )
            
            gr.Examples(
                examples=examples,
                fn=infer,
                inputs=[prompt],
                outputs=[generated_image, seed],
                cache_examples=True,
                cache_mode='lazy'
            )


        gr.on(
            triggers=[prompt_button.click, prompt.submit],
            fn = refine_prompt,
            inputs = [prompt],
            outputs = [refined_prompt]
        )

        gr.on(
            triggers=[run_button.click],
            fn = infer,
            inputs = [refined_prompt, seed, randomize_seed, width, height, num_inference_steps],
            outputs = [generated_image, seed]
        )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch()