Spaces:
Runtime error
Runtime error
File size: 5,773 Bytes
5845270 e69d279 19bcaa7 aabfbe0 e69d279 6894e88 19bcaa7 76813dd 19bcaa7 08f5d28 07db937 e69d279 07db937 e69d279 07db937 e69d279 6894e88 cbb8f23 6894e88 2836ec9 6894e88 2836ec9 6894e88 e69d279 aabfbe0 76813dd e69d279 08f5d28 e69d279 aabfbe0 e69d279 6894e88 e69d279 08f5d28 cbb8f23 08f5d28 6894e88 08f5d28 e69d279 6894e88 08f5d28 e69d279 aabfbe0 e69d279 aabfbe0 e69d279 aabfbe0 e69d279 6894e88 e69d279 6894e88 e69d279 c454959 e69d279 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import gradio as gr
import numpy as np
import random
import os
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline
from huggingface_hub import login
hf_token = os.getenv("hf_token")
login(token=hf_token)
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def refine_prompt(prompt):
chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3", max_new_tokens=2048,)
messages = [
{"role": "system", "content": "You are a product designer. You will get a basic prompt of product request and you need to imagine a new product design to satisfy that need. Produce an extended description of product front view that will be use by Flux to generate a visual"},
{"role": "user", "content": prompt},
]
refined_prompt = chatbot(messages)
return refined_prompt
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
width = width,
height = height,
num_inference_steps = num_inference_steps,
generator = generator,
guidance_scale=0.0
).images[0]
return image, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
info = gr.Info("...")
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Text to Product
Using Mistral + Flux + Trellis
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
prompt_button = gr.Button("Refine prompt", scale=0)
refined_prompt = gr.Text(
label="Refined Prompt",
show_label=False,
max_lines=10,
placeholder="Prompt refined by Mistral",
container=False,
max_length=2048,
)
run_button = gr.Button("Create visual", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings Mistral", open=False):
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
with gr.Accordion("Advanced Settings Flux", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[prompt_button.click, prompt.submit],
fn = refine_prompt,
inputs = [prompt],
outputs = [refined_prompt]
)
gr.on(
triggers=[run_button.click],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs = [result, seed]
)
demo.launch() |