Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import os | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
from transformers import pipeline, AutoTokenizer | |
from huggingface_hub import login | |
from PIL import Image | |
hf_token = os.getenv("hf_token") | |
login(token=hf_token) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
PRELOAD_MODELS = False # Easy switch for preloading | |
_text_gen_pipeline = None | |
_image_gen_pipeline = None | |
def get_image_gen_pipeline(): | |
global _image_gen_pipeline | |
if _image_gen_pipeline is None: | |
try: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.bfloat16 | |
_image_gen_pipeline = DiffusionPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
torch_dtype=dtype, | |
).to(device) | |
# Comment these out for now to match the working example | |
# _image_gen_pipeline.enable_model_cpu_offload() | |
# _image_gen_pipeline.enable_vae_slicing() | |
except Exception as e: | |
print(f"Error loading image generation model: {e}") | |
return None | |
return _image_gen_pipeline | |
def get_text_gen_pipeline(): | |
global _text_gen_pipeline | |
if _text_gen_pipeline is None: | |
try: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
tokenizer = AutoTokenizer.from_pretrained( | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
use_fast=True | |
) | |
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token | |
_text_gen_pipeline = pipeline( | |
"text-generation", | |
model="mistralai/Mistral-7B-Instruct-v0.3", | |
tokenizer=tokenizer, | |
max_new_tokens=2048, | |
device=device, | |
pad_token_id=tokenizer.pad_token_id | |
) | |
except Exception as e: | |
print(f"Error loading text generation model: {e}") | |
return None | |
return _text_gen_pipeline | |
def refine_prompt(prompt, progress=gr.Progress(track_tqdm=True)): | |
text_gen = get_text_gen_pipeline() | |
if text_gen is None: | |
return "Text generation model is unavailable." | |
try: | |
messages = [ | |
{"role": "system", "content": "Vous êtes un designer produit avec de solides connaissances dans la génération de texte en image. Vous recevrez une demande de produit sous forme de description succincte, et votre mission sera d'imaginer un nouveau design de produit répondant à ce besoin.\n\nLe livrable (réponse générée) sera exclusivement un texte de prompt pour l'IA de texte to image FLUX.1-schnell.\n\nCe prompt devra inclure une description visuelle de l'objet mentionnant explicitement les aspects indispensables de sa fonction.\nA coté de ça vous devez aussi explicitement mentionner dans ce prompt les caractéristiques esthétiques/photo du rendu image (ex : photoréaliste, haute qualité, focale, grain, etc.), sachant que l'image sera l'image principale de cet objet dans le catalogue produit. Le fond de l'image générée doit être entièrement blanc.\nLe prompt doit être sans narration, peut être long mais ne doit pas dépasser 77 jetons."}, {"role": "user", "content": prompt}, | |
] | |
with progress.tqdm(total=1, desc="Generating text") as pbar: | |
refined_prompt = text_gen(messages) | |
pbar.update(1) | |
# Extract just the assistant's content from the response | |
try: | |
messages = refined_prompt[0]['generated_text'] | |
# Find the last message with role 'assistant' | |
assistant_messages = [msg for msg in messages if msg['role'] == 'assistant'] | |
if not assistant_messages: | |
return "Error: No assistant response found" | |
assistant_content = assistant_messages[-1]['content'] | |
return assistant_content, "Prompt refined successfully!" | |
except (KeyError, IndexError): | |
return "", "Error: Unexpected response format from the model" | |
except Exception as e: | |
return "", f"Error refining prompt: {str(e)}" | |
def validate_dimensions(width, height): | |
if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE: | |
return False, "Image dimensions too large" | |
return True, None | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
try: | |
# Validate that prompt is not empty | |
if not prompt or prompt.strip() == "": | |
return None, "Please provide a valid prompt." | |
pipe = get_image_gen_pipeline() | |
if pipe is None: | |
return None, "Image generation model is unavailable." | |
is_valid, error_msg = validate_dimensions(width, height) | |
if not is_valid: | |
return None, error_msg | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Use default torch generator instead of cuda-specific generator | |
generator = torch.Generator().manual_seed(seed) | |
# Match the working example's parameters | |
output = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0, # Changed from 7.5 to 0.0 | |
) | |
image = output.images[0] | |
return image, f"Image generated successfully with seed {seed}" | |
except Exception as e: | |
print(f"Error in infer: {str(e)}") | |
return None, f"Error generating image: {str(e)}" | |
examples = [ | |
"a backpack for kids, flower style", | |
"medieval flip flops", | |
"cat shaped cake mold", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
def preload_models(): | |
global _text_gen_pipeline, _image_gen_pipeline | |
print("Preloading models...") | |
success = True | |
try: | |
_text_gen_pipeline = get_text_gen_pipeline() | |
if _text_gen_pipeline is None: | |
success = False | |
except Exception as e: | |
print(f"Error preloading text generation model: {str(e)}") | |
success = False | |
try: | |
_image_gen_pipeline = get_image_gen_pipeline() | |
if _image_gen_pipeline is None: | |
success = False | |
except Exception as e: | |
print(f"Error preloading image generation model: {str(e)}") | |
success = False | |
status = "Models preloaded successfully!" if success else "Error preloading models" | |
print(status) | |
return success | |
def create_interface(): | |
# Preload models if needed | |
if PRELOAD_MODELS: | |
models_loaded = preload_models() | |
model_status = "✅ Models loaded successfully!" if models_loaded else "⚠️ Error loading models" | |
else: | |
model_status = "ℹ️ Models will be loaded on demand" | |
with gr.Blocks(css=css) as demo: | |
gr.Info(model_status) | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# Text to Product\nUsing Mistral-7B-Instruct-v0.3 + FLUX.1-dev + Trellis") | |
# Basic inputs | |
with gr.Row(): | |
prompt = gr.Text( | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter basic object prompt", | |
container=False, | |
) | |
prompt_button = gr.Button("Refine prompt with Mistral") | |
refined_prompt = gr.Text( | |
show_label=False, | |
max_lines=10, | |
placeholder="Detailed object prompt", | |
container=False, | |
max_length=2048, | |
) | |
visual_button = gr.Button("Create visual with Flux") | |
generated_image = gr.Image(show_label=False) | |
error_box = gr.Textbox( | |
label="Status Messages", | |
interactive=False, | |
placeholder="Status messages will appear here", | |
) | |
# Accordion sections for advanced settings | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Tab("Mistral"): | |
# Mistral settings | |
temperature = gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
info="Higher values produce more diverse outputs", | |
) | |
with gr.Tab("Flux"): | |
# Flux settings | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=10, | |
) | |
# Examples section | |
gr.Examples( | |
examples=examples, | |
fn=refine_prompt, | |
inputs=[prompt], | |
outputs=[refined_prompt], | |
cache_examples=True, | |
) | |
# Event handlers | |
gr.on( | |
triggers=[prompt_button.click, prompt.submit], | |
fn=refine_prompt, | |
inputs=[prompt], | |
outputs=[refined_prompt, error_box] | |
) | |
gr.on( | |
triggers=[visual_button.click], | |
fn=infer, | |
inputs=[refined_prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs=[generated_image, error_box] | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch() |