File size: 10,372 Bytes
5845270
e69d279
 
19bcaa7
aabfbe0
 
e69d279
07c838c
19bcaa7
47d8bfc
19bcaa7
76813dd
19bcaa7
08f5d28
e69d279
86467c9
52efc32
e69d279
b0c8c02
827b490
 
 
 
 
 
 
 
 
 
0d131d4
470ecaf
827b490
16aaa49
 
 
 
827b490
 
 
 
 
b6b421e
b0c8c02
 
 
640d399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0c8c02
98c7793
b6b421e
5e367a0
b0c8c02
 
98c7793
5428aaf
 
47d8bfc
5428aaf
5e367a0
 
 
16d258e
69e268f
 
16d258e
 
 
 
 
 
5e367a0
69e268f
5e367a0
5428aaf
5e367a0
5428aaf
 
 
 
 
6894e88
e69d279
16aaa49
5428aaf
98c7793
 
 
 
3dc3dff
 
 
 
98c7793
 
 
 
5428aaf
 
 
16aaa49
 
5428aaf
16aaa49
2434ffa
16aaa49
 
 
 
 
 
 
47d8bfc
2434ffa
640d399
5428aaf
47d8bfc
9c9a1f3
e69d279
 
5ffb407
 
 
e69d279
 
 
 
 
 
 
 
 
276236e
640d399
 
 
 
 
276236e
640d399
 
 
276236e
640d399
 
 
 
 
 
 
 
 
 
 
 
 
 
08f5d28
276236e
640d399
52efc32
 
640d399
276236e
640d399
276236e
 
640d399
276236e
 
640d399
aabfbe0
640d399
aabfbe0
276236e
 
 
b39baa9
276236e
e69d279
640d399
276236e
 
 
 
b39baa9
276236e
 
640d399
276236e
640d399
 
 
 
 
 
 
276236e
640d399
 
 
 
 
 
 
 
 
 
 
276236e
 
640d399
 
 
 
 
 
 
 
276236e
 
 
 
 
 
e6ef8b4
276236e
640d399
 
276236e
5ffb407
33188dc
640d399
 
276236e
 
e69d279
640d399
276236e
 
640d399
 
5e367a0
276236e
 
 
640d399
 
 
 
276236e
6894e88
276236e
e69d279
276236e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import gradio as gr
import numpy as np
import random
import os
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline, AutoTokenizer
from huggingface_hub import login
from PIL import Image

hf_token = os.getenv("hf_token")
login(token=hf_token)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
PRELOAD_MODELS = False  # Easy switch for preloading

_text_gen_pipeline = None
_image_gen_pipeline = None

@spaces.GPU()
def get_image_gen_pipeline():
    global _image_gen_pipeline
    if _image_gen_pipeline is None:
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            dtype = torch.bfloat16
            _image_gen_pipeline = DiffusionPipeline.from_pretrained(
                "black-forest-labs/FLUX.1-schnell",
                torch_dtype=dtype,
            ).to(device)
            
            # Comment these out for now to match the working example
            # _image_gen_pipeline.enable_model_cpu_offload()
            # _image_gen_pipeline.enable_vae_slicing()
        except Exception as e:
            print(f"Error loading image generation model: {e}")
            return None
    return _image_gen_pipeline

@spaces.GPU()
def get_text_gen_pipeline():
    global _text_gen_pipeline
    if _text_gen_pipeline is None:
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            tokenizer = AutoTokenizer.from_pretrained(
                "mistralai/Mistral-7B-Instruct-v0.3",
                use_fast=True
            )
            tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
            
            _text_gen_pipeline = pipeline(
                "text-generation",
                model="mistralai/Mistral-7B-Instruct-v0.3",
                tokenizer=tokenizer,
                max_new_tokens=2048,
                device=device,
                pad_token_id=tokenizer.pad_token_id
            )
        except Exception as e:
            print(f"Error loading text generation model: {e}")
            return None
    return _text_gen_pipeline

@spaces.GPU()
def refine_prompt(prompt, progress=gr.Progress(track_tqdm=True)):
    text_gen = get_text_gen_pipeline()
    if text_gen is None:
        return "Text generation model is unavailable."
    try:
        messages = [
            {"role": "system", "content": "Vous êtes un designer produit avec de solides connaissances dans la génération de texte en image. Vous recevrez une demande de produit sous forme de description succincte, et votre mission sera d'imaginer un nouveau design de produit répondant à ce besoin.\n\nLe livrable (réponse générée) sera exclusivement un texte de prompt pour l'IA de texte to image FLUX.1-schnell.\n\nCe prompt devra inclure une description visuelle de l'objet mentionnant explicitement les aspects indispensables de sa fonction.\nA coté de ça vous devez aussi explicitement mentionner dans ce prompt les caractéristiques esthétiques/photo du rendu image (ex : photoréaliste, haute qualité, focale, grain, etc.), sachant que l'image sera l'image principale de cet objet dans le catalogue produit. Le fond de l'image générée doit être entièrement blanc.\nLe prompt doit être sans narration, peut être long mais ne doit pas dépasser 77 jetons."},            {"role": "user", "content": prompt},
        ]
        with progress.tqdm(total=1, desc="Generating text") as pbar:
            refined_prompt = text_gen(messages)
            pbar.update(1)
        
        # Extract just the assistant's content from the response
        try:
            messages = refined_prompt[0]['generated_text']
            # Find the last message with role 'assistant'
            assistant_messages = [msg for msg in messages if msg['role'] == 'assistant']
            if not assistant_messages:
                return "Error: No assistant response found"
            assistant_content = assistant_messages[-1]['content']
            return assistant_content, "Prompt refined successfully!"
        except (KeyError, IndexError):
            return "", "Error: Unexpected response format from the model"
    except Exception as e:
        return "", f"Error refining prompt: {str(e)}"

def validate_dimensions(width, height):
    if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE:
        return False, "Image dimensions too large"
    return True, None

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): 
    try:
        # Validate that prompt is not empty
        if not prompt or prompt.strip() == "":
            return None, "Please provide a valid prompt."

        pipe = get_image_gen_pipeline()
        if pipe is None:
            return None, "Image generation model is unavailable."
        
        is_valid, error_msg = validate_dimensions(width, height)
        if not is_valid:
            return None, error_msg

        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
        
        # Use default torch generator instead of cuda-specific generator
        generator = torch.Generator().manual_seed(seed)
        
        # Match the working example's parameters
        output = pipe(
            prompt=prompt, 
            width=width,
            height=height,
            num_inference_steps=num_inference_steps, 
            generator=generator,
            guidance_scale=0.0,  # Changed from 7.5 to 0.0
        )
            
        image = output.images[0]
        return image, f"Image generated successfully with seed {seed}"
    except Exception as e:
        print(f"Error in infer: {str(e)}")  
        return None, f"Error generating image: {str(e)}"
 
examples = [
    "a backpack for kids, flower style",
    "medieval flip flops",
    "cat shaped cake mold",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

def preload_models():
    global _text_gen_pipeline, _image_gen_pipeline
    
    print("Preloading models...")
    success = True
    
    try:
        _text_gen_pipeline = get_text_gen_pipeline()
        if _text_gen_pipeline is None:
            success = False
    except Exception as e:
        print(f"Error preloading text generation model: {str(e)}")
        success = False
    
    try:
        _image_gen_pipeline = get_image_gen_pipeline()
        if _image_gen_pipeline is None:
            success = False
    except Exception as e:
        print(f"Error preloading image generation model: {str(e)}")
        success = False
    
    status = "Models preloaded successfully!" if success else "Error preloading models"
    print(status)
    return success

def create_interface():
    # Preload models if needed
    if PRELOAD_MODELS:
        models_loaded = preload_models()
        model_status = "✅ Models loaded successfully!" if models_loaded else "⚠️ Error loading models"
    else:
        model_status = "ℹ️ Models will be loaded on demand"

    with gr.Blocks(css=css) as demo:
        gr.Info(model_status)

        with gr.Column(elem_id="col-container"):
            gr.Markdown("# Text to Product\nUsing Mistral-7B-Instruct-v0.3 + FLUX.1-dev + Trellis")
            
            # Basic inputs
            with gr.Row():
                prompt = gr.Text(
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter basic object prompt",
                    container=False,
                )
                prompt_button = gr.Button("Refine prompt with Mistral")
            
            refined_prompt = gr.Text(
                show_label=False,
                max_lines=10, 
                placeholder="Detailed object prompt", 
                container=False,
                max_length=2048,
            )
            
            visual_button = gr.Button("Create visual with Flux")
            generated_image = gr.Image(show_label=False)
            error_box = gr.Textbox(
                label="Status Messages", 
                interactive=False,
                placeholder="Status messages will appear here",
            )
            
            # Accordion sections for advanced settings
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Tab("Mistral"):
                    # Mistral settings
                    temperature = gr.Slider(
                        label="Temperature",
                        value=0.9,
                        minimum=0.0,
                        maximum=1.0,
                        step=0.05,
                        info="Higher values produce more diverse outputs",
                    )
                    
                with gr.Tab("Flux"):
                    # Flux settings
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    
                    with gr.Row():
                        width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
                        height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
                    
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=10,
                    )

            # Examples section
            gr.Examples(
                examples=examples,
                fn=refine_prompt,
                inputs=[prompt],
                outputs=[refined_prompt],
                cache_examples=True,
            )

        # Event handlers
        gr.on(
            triggers=[prompt_button.click, prompt.submit],
            fn=refine_prompt,
            inputs=[prompt],
            outputs=[refined_prompt, error_box]
        )

        gr.on(
            triggers=[visual_button.click],
            fn=infer,
            inputs=[refined_prompt, seed, randomize_seed, width, height, num_inference_steps],
            outputs=[generated_image, error_box]
        )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch()