Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import os | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
from transformers import pipeline, AutoTokenizer | |
from huggingface_hub import login | |
from PIL import Image | |
hf_token = os.getenv("hf_token") | |
login(token=hf_token) | |
# Global constants and default values | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
PRELOAD_MODELS = False | |
# Default system prompt for text generation | |
DEFAULT_SYSTEM_PROMPT = """You are a product designer with strong knowledge in text-to-image generation. You will receive a product request in the form of a brief description, and your mission will be to imagine a new product design that meets this need. | |
The deliverable (generated response) will be exclusively a text prompt for the FLUX.1-schnell text-to-image AI. | |
This prompt should include a visual description of the object explicitly mentioning the essential aspects of its function. | |
Additionally, you should explicitly mention in this prompt the aesthetic/photo characteristics of the image rendering (e.g., photorealistic, high quality, focal length, grain, etc.), knowing that the image will be the main image of this object in the product catalog. The background of the generated image must be entirely white. | |
The prompt should be without narration, can be long but must not exceed 77 tokens.""" | |
# Default Flux parameters | |
DEFAULT_SEED = 42 | |
DEFAULT_RANDOMIZE_SEED = True | |
DEFAULT_WIDTH = 512 | |
DEFAULT_HEIGHT = 512 | |
DEFAULT_NUM_INFERENCE_STEPS = 6 | |
DEFAULT_GUIDANCE_SCALE = 0.0 | |
DEFAULT_TEMPERATURE = 0.9 | |
_text_gen_pipeline = None | |
_image_gen_pipeline = None | |
def get_image_gen_pipeline(): | |
global _image_gen_pipeline | |
if (_image_gen_pipeline is None): | |
try: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.bfloat16 | |
_image_gen_pipeline = DiffusionPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
torch_dtype=dtype, | |
).to(device) | |
# Comment these out for now to match the working example | |
# _image_gen_pipeline.enable_model_cpu_offload() | |
# _image_gen_pipeline.enable_vae_slicing() | |
except Exception as e: | |
print(f"Error loading image generation model: {e}") | |
return None | |
return _image_gen_pipeline | |
def get_text_gen_pipeline(): | |
global _text_gen_pipeline | |
if (_text_gen_pipeline is None): | |
try: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
tokenizer = AutoTokenizer.from_pretrained( | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
use_fast=True | |
) | |
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token | |
_text_gen_pipeline = pipeline( | |
"text-generation", | |
model="mistralai/Mistral-7B-Instruct-v0.3", | |
tokenizer=tokenizer, | |
max_new_tokens=2048, | |
device=device, | |
pad_token_id=tokenizer.pad_token_id | |
) | |
except Exception as e: | |
print(f"Error loading text generation model: {e}") | |
return None | |
return _text_gen_pipeline | |
def refine_prompt(prompt, system_prompt=DEFAULT_SYSTEM_PROMPT, progress=gr.Progress()): | |
text_gen = get_text_gen_pipeline() | |
if text_gen is None: | |
return "", "Text generation model is unavailable." | |
try: | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": prompt}, | |
] | |
# Indicate progress started | |
progress(0, desc="Generating text") | |
# Generate text | |
refined_prompt = text_gen(messages) | |
# Indicate progress complete | |
progress(1) | |
# Extract just the assistant's content from the response | |
try: | |
messages = refined_prompt[0]['generated_text'] | |
# Find the last message with role 'assistant' | |
assistant_messages = [msg for msg in messages if msg['role'] == 'assistant'] | |
if not assistant_messages: | |
return "", "Error: No assistant response found" | |
assistant_content = assistant_messages[-1]['content'] | |
# Remove quotation marks at the beginning and end | |
if assistant_content.startswith('"') and assistant_content.endswith('"'): | |
assistant_content = assistant_content[1:-1] | |
return assistant_content, "Prompt refined successfully!" | |
except (KeyError, IndexError): | |
return "", "Error: Unexpected response format from the model" | |
except Exception as e: | |
print(f"Error in refine_prompt: {str(e)}") # Add debug print | |
return "", f"Error refining prompt: {str(e)}" | |
def validate_dimensions(width, height): | |
if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE: | |
return False, "Image dimensions too large" | |
return True, None | |
def infer(prompt, seed=DEFAULT_SEED, | |
randomize_seed=DEFAULT_RANDOMIZE_SEED, | |
width=DEFAULT_WIDTH, | |
height=DEFAULT_HEIGHT, | |
num_inference_steps=DEFAULT_NUM_INFERENCE_STEPS, | |
progress=gr.Progress(track_tqdm=True)): | |
try: | |
# Validate that prompt is not empty | |
if not prompt or prompt.strip() == "": | |
return None, "Please provide a valid prompt." | |
progress(0.1, desc="Loading model") | |
pipe = get_image_gen_pipeline() | |
if pipe is None: | |
return None, "Image generation model is unavailable." | |
is_valid, error_msg = validate_dimensions(width, height) | |
if not is_valid: | |
return None, error_msg | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Use default torch generator instead of cuda-specific generator | |
generator = torch.Generator().manual_seed(seed) | |
progress(0.3, desc="Running inference") | |
# Match the working example's parameters | |
output = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=DEFAULT_GUIDANCE_SCALE, | |
) | |
progress(0.8, desc="Processing output") | |
image = output.images[0] | |
progress(1.0, desc="Complete") | |
return image, f"Image generated successfully with seed {seed}" | |
except Exception as e: | |
print(f"Error in infer: {str(e)}") | |
return None, f"Error generating image: {str(e)}" | |
# Format: [prompt, system_prompt] | |
examples = [ | |
"a backpack for kids, flower style", | |
"medieval flip flops", | |
"cat shaped cake mold", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
def preload_models(): | |
print("Preloading models...") | |
text_success = get_text_gen_pipeline() is not None | |
image_success = get_image_gen_pipeline() is not None | |
success = text_success and image_success | |
status = "Models preloaded successfully!" if success else "Error preloading models" | |
print(status) | |
return success | |
# Create a combined function that handles the whole pipeline from example to image | |
# This version gets the parameters from the UI components | |
def process_example_pipeline(example_prompt, system_prompt=DEFAULT_SYSTEM_PROMPT, progress=gr.Progress()): | |
# Step 1: Update status | |
progress(0, desc="Starting example processing") | |
# Step 2: Refine the prompt | |
progress(0.1, desc="Refining prompt with Mistral") | |
refined, status = refine_prompt(example_prompt, system_prompt, progress) | |
if not refined: | |
return "", "Failed to refine prompt: " + status | |
# Return only the refined prompt and status - don't generate image | |
return refined, "Prompt refined successfully!" | |
def create_interface(): | |
# Preload models if needed | |
if PRELOAD_MODELS: | |
models_loaded = preload_models() | |
model_status = "✅ Models loaded successfully!" if models_loaded else "⚠️ Error loading models" | |
else: | |
model_status = "ℹ️ Models will be loaded on demand" | |
with gr.Blocks(css=css) as demo: | |
gr.Info(model_status) | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# Text to Product\nUsing Mistral-7B-Instruct-v0.3 + FLUX.1-dev + Trellis") | |
prompt = gr.Text( | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter basic object prompt", | |
container=False, | |
) | |
prompt_button = gr.Button("Refine prompt with Mistral") | |
refined_prompt = gr.Text( | |
show_label=False, | |
max_lines=10, | |
placeholder="Detailed object prompt", | |
container=False, | |
max_length=2048, | |
) | |
visual_button = gr.Button("Create visual with Flux") | |
generated_image = gr.Image(show_label=False) | |
gen3d_button = gr.Button("Create 3D visual with Trellis") | |
message_box = gr.Textbox( | |
label="Status Messages", | |
interactive=False, | |
placeholder="Status messages will appear here", | |
) | |
# Accordion sections for advanced settings | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Tab("Mistral"): | |
# Mistral settings | |
temperature = gr.Slider( | |
label="Temperature", | |
value=DEFAULT_TEMPERATURE, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
info="Higher values produce more diverse outputs", | |
) | |
system_prompt = gr.Textbox( | |
label="System Prompt", | |
value=DEFAULT_SYSTEM_PROMPT, | |
lines=10, | |
info="Instructions for the Mistral model" | |
) | |
with gr.Tab("Flux"): | |
# Flux settings | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=DEFAULT_SEED) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=DEFAULT_RANDOMIZE_SEED) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=DEFAULT_NUM_INFERENCE_STEPS, | |
) | |
# Examples section - simplified version that only updates the prompt fields | |
gr.Examples( | |
examples=examples, # Now just a list of prompts | |
fn=process_example_pipeline, | |
inputs=[prompt], # Add system_prompt as input | |
outputs=[refined_prompt, message_box], # Don't output image | |
cache_examples=True, | |
) | |
# Event handlers | |
gr.on( | |
triggers=[prompt_button.click, prompt.submit], | |
fn=refine_prompt, | |
inputs=[prompt, system_prompt], # Add system_prompt as input | |
outputs=[refined_prompt, message_box] | |
) | |
gr.on( | |
triggers=[visual_button.click], | |
fn=infer, | |
inputs=[refined_prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs=[generated_image, message_box] | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch() |