Spaces:
Runtime error
Runtime error
File size: 12,241 Bytes
5845270 e69d279 19bcaa7 aabfbe0 e69d279 07c838c 19bcaa7 47d8bfc 19bcaa7 76813dd 19bcaa7 08f5d28 a196f30 e69d279 86467c9 a196f30 67b0366 a196f30 67b0366 a196f30 67b0366 a196f30 e69d279 b0c8c02 827b490 412c4ad 827b490 0d131d4 470ecaf 827b490 16aaa49 827b490 b6b421e b0c8c02 412c4ad 640d399 b0c8c02 98c7793 b6b421e 067e31b b0c8c02 8538434 5428aaf 067e31b 5428aaf 8538434 16d258e 69e268f 16d258e 8538434 16d258e 6c80f3e 5e367a0 69e268f 5e367a0 5428aaf 8538434 5e367a0 5428aaf 6894e88 e69d279 a196f30 5428aaf 98c7793 a196f30 3dc3dff 98c7793 5428aaf 16aaa49 5428aaf a196f30 16aaa49 2434ffa 16aaa49 a196f30 16aaa49 47d8bfc a196f30 2434ffa a196f30 640d399 5428aaf 47d8bfc 9c9a1f3 e69d279 a196f30 e69d279 67b0366 e69d279 276236e 640d399 a196f30 640d399 08f5d28 412c4ad beab0ef 412c4ad 067e31b 412c4ad 067e31b 412c4ad 6c80f3e 412c4ad beab0ef 6c80f3e 412c4ad 276236e 640d399 52efc32 640d399 276236e 640d399 276236e 640d399 276236e 640d399 aabfbe0 6c80f3e 276236e b39baa9 276236e 640d399 6c80f3e 640d399 6c80f3e 640d399 276236e 640d399 a196f30 640d399 276236e 067e31b 640d399 a196f30 640d399 a196f30 276236e a196f30 276236e 640d399 beab0ef 276236e beab0ef 412c4ad 67b0366 6c80f3e beab0ef 276236e e69d279 640d399 276236e 640d399 067e31b 6c80f3e 276236e 640d399 6c80f3e 276236e 6894e88 276236e e69d279 276236e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import gradio as gr
import numpy as np
import random
import os
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline, AutoTokenizer
from huggingface_hub import login
from PIL import Image
hf_token = os.getenv("hf_token")
login(token=hf_token)
# Global constants and default values
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
PRELOAD_MODELS = False
# Default system prompt for text generation
DEFAULT_SYSTEM_PROMPT = """You are a product designer with strong knowledge in text-to-image generation. You will receive a product request in the form of a brief description, and your mission will be to imagine a new product design that meets this need.
The deliverable (generated response) will be exclusively a text prompt for the FLUX.1-schnell text-to-image AI.
This prompt should include a visual description of the object explicitly mentioning the essential aspects of its function.
Additionally, you should explicitly mention in this prompt the aesthetic/photo characteristics of the image rendering (e.g., photorealistic, high quality, focal length, grain, etc.), knowing that the image will be the main image of this object in the product catalog. The background of the generated image must be entirely white.
The prompt should be without narration, can be long but must not exceed 77 tokens."""
# Default Flux parameters
DEFAULT_SEED = 42
DEFAULT_RANDOMIZE_SEED = True
DEFAULT_WIDTH = 512
DEFAULT_HEIGHT = 512
DEFAULT_NUM_INFERENCE_STEPS = 6
DEFAULT_GUIDANCE_SCALE = 0.0
DEFAULT_TEMPERATURE = 0.9
_text_gen_pipeline = None
_image_gen_pipeline = None
@spaces.GPU()
def get_image_gen_pipeline():
global _image_gen_pipeline
if (_image_gen_pipeline is None):
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
_image_gen_pipeline = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype,
).to(device)
# Comment these out for now to match the working example
# _image_gen_pipeline.enable_model_cpu_offload()
# _image_gen_pipeline.enable_vae_slicing()
except Exception as e:
print(f"Error loading image generation model: {e}")
return None
return _image_gen_pipeline
@spaces.GPU()
def get_text_gen_pipeline():
global _text_gen_pipeline
if (_text_gen_pipeline is None):
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.3",
use_fast=True
)
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
_text_gen_pipeline = pipeline(
"text-generation",
model="mistralai/Mistral-7B-Instruct-v0.3",
tokenizer=tokenizer,
max_new_tokens=2048,
device=device,
pad_token_id=tokenizer.pad_token_id
)
except Exception as e:
print(f"Error loading text generation model: {e}")
return None
return _text_gen_pipeline
@spaces.GPU()
def refine_prompt(prompt, system_prompt=DEFAULT_SYSTEM_PROMPT, progress=gr.Progress()):
text_gen = get_text_gen_pipeline()
if text_gen is None:
return "", "Text generation model is unavailable."
try:
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
]
# Indicate progress started
progress(0, desc="Generating text")
# Generate text
refined_prompt = text_gen(messages)
# Indicate progress complete
progress(1)
# Extract just the assistant's content from the response
try:
messages = refined_prompt[0]['generated_text']
# Find the last message with role 'assistant'
assistant_messages = [msg for msg in messages if msg['role'] == 'assistant']
if not assistant_messages:
return "", "Error: No assistant response found"
assistant_content = assistant_messages[-1]['content']
# Remove quotation marks at the beginning and end
if assistant_content.startswith('"') and assistant_content.endswith('"'):
assistant_content = assistant_content[1:-1]
return assistant_content, "Prompt refined successfully!"
except (KeyError, IndexError):
return "", "Error: Unexpected response format from the model"
except Exception as e:
print(f"Error in refine_prompt: {str(e)}") # Add debug print
return "", f"Error refining prompt: {str(e)}"
def validate_dimensions(width, height):
if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE:
return False, "Image dimensions too large"
return True, None
@spaces.GPU()
def infer(prompt, seed=DEFAULT_SEED,
randomize_seed=DEFAULT_RANDOMIZE_SEED,
width=DEFAULT_WIDTH,
height=DEFAULT_HEIGHT,
num_inference_steps=DEFAULT_NUM_INFERENCE_STEPS,
progress=gr.Progress(track_tqdm=True)):
try:
# Validate that prompt is not empty
if not prompt or prompt.strip() == "":
return None, "Please provide a valid prompt."
progress(0.1, desc="Loading model")
pipe = get_image_gen_pipeline()
if pipe is None:
return None, "Image generation model is unavailable."
is_valid, error_msg = validate_dimensions(width, height)
if not is_valid:
return None, error_msg
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Use default torch generator instead of cuda-specific generator
generator = torch.Generator().manual_seed(seed)
progress(0.3, desc="Running inference")
# Match the working example's parameters
output = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=DEFAULT_GUIDANCE_SCALE,
)
progress(0.8, desc="Processing output")
image = output.images[0]
progress(1.0, desc="Complete")
return image, f"Image generated successfully with seed {seed}"
except Exception as e:
print(f"Error in infer: {str(e)}")
return None, f"Error generating image: {str(e)}"
# Format: [prompt, system_prompt]
examples = [
"a backpack for kids, flower style",
"medieval flip flops",
"cat shaped cake mold",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
def preload_models():
print("Preloading models...")
text_success = get_text_gen_pipeline() is not None
image_success = get_image_gen_pipeline() is not None
success = text_success and image_success
status = "Models preloaded successfully!" if success else "Error preloading models"
print(status)
return success
# Create a combined function that handles the whole pipeline from example to image
# This version gets the parameters from the UI components
@spaces.GPU()
def process_example_pipeline(example_prompt, system_prompt=DEFAULT_SYSTEM_PROMPT, progress=gr.Progress()):
# Step 1: Update status
progress(0, desc="Starting example processing")
# Step 2: Refine the prompt
progress(0.1, desc="Refining prompt with Mistral")
refined, status = refine_prompt(example_prompt, system_prompt, progress)
if not refined:
return "", "Failed to refine prompt: " + status
# Return only the refined prompt and status - don't generate image
return refined, "Prompt refined successfully!"
def create_interface():
# Preload models if needed
if PRELOAD_MODELS:
models_loaded = preload_models()
model_status = "✅ Models loaded successfully!" if models_loaded else "⚠️ Error loading models"
else:
model_status = "ℹ️ Models will be loaded on demand"
with gr.Blocks(css=css) as demo:
gr.Info(model_status)
with gr.Column(elem_id="col-container"):
gr.Markdown("# Text to Product\nUsing Mistral-7B-Instruct-v0.3 + FLUX.1-dev + Trellis")
prompt = gr.Text(
show_label=False,
max_lines=1,
placeholder="Enter basic object prompt",
container=False,
)
prompt_button = gr.Button("Refine prompt with Mistral")
refined_prompt = gr.Text(
show_label=False,
max_lines=10,
placeholder="Detailed object prompt",
container=False,
max_length=2048,
)
visual_button = gr.Button("Create visual with Flux")
generated_image = gr.Image(show_label=False)
gen3d_button = gr.Button("Create 3D visual with Trellis")
message_box = gr.Textbox(
label="Status Messages",
interactive=False,
placeholder="Status messages will appear here",
)
# Accordion sections for advanced settings
with gr.Accordion("Advanced Settings", open=False):
with gr.Tab("Mistral"):
# Mistral settings
temperature = gr.Slider(
label="Temperature",
value=DEFAULT_TEMPERATURE,
minimum=0.0,
maximum=1.0,
step=0.05,
info="Higher values produce more diverse outputs",
)
system_prompt = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
lines=10,
info="Instructions for the Mistral model"
)
with gr.Tab("Flux"):
# Flux settings
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=DEFAULT_SEED)
randomize_seed = gr.Checkbox(label="Randomize seed", value=DEFAULT_RANDOMIZE_SEED)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=DEFAULT_NUM_INFERENCE_STEPS,
)
# Examples section - simplified version that only updates the prompt fields
gr.Examples(
examples=examples, # Now just a list of prompts
fn=process_example_pipeline,
inputs=[prompt], # Add system_prompt as input
outputs=[refined_prompt, message_box], # Don't output image
cache_examples=True,
)
# Event handlers
gr.on(
triggers=[prompt_button.click, prompt.submit],
fn=refine_prompt,
inputs=[prompt, system_prompt], # Add system_prompt as input
outputs=[refined_prompt, message_box]
)
gr.on(
triggers=[visual_button.click],
fn=infer,
inputs=[refined_prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs=[generated_image, message_box]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch() |