File size: 9,547 Bytes
6b4a7ef
 
 
 
 
 
 
 
71c05d4
6b4a7ef
 
 
71c05d4
 
6b4a7ef
 
71c05d4
6b4a7ef
 
 
 
 
 
 
 
 
 
 
 
71c05d4
6b4a7ef
 
 
 
 
 
 
 
 
 
71c05d4
 
 
 
 
 
6b4a7ef
 
 
 
 
 
 
 
 
 
71c05d4
6b4a7ef
 
 
 
 
 
71c05d4
6b4a7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71c05d4
6b4a7ef
 
 
71c05d4
6b4a7ef
 
 
 
71c05d4
6b4a7ef
71c05d4
6b4a7ef
 
 
 
 
 
 
 
 
 
 
71c05d4
 
 
 
 
6b4a7ef
71c05d4
6b4a7ef
71c05d4
6b4a7ef
71c05d4
6b4a7ef
 
 
 
 
 
71c05d4
 
 
6b4a7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71c05d4
 
 
6b4a7ef
 
71c05d4
6b4a7ef
 
71c05d4
6b4a7ef
 
 
71c05d4
6b4a7ef
 
 
 
 
 
 
 
 
 
71c05d4
 
 
 
 
 
6b4a7ef
 
 
 
 
71c05d4
6b4a7ef
 
 
 
71c05d4
6b4a7ef
 
 
71c05d4
6b4a7ef
71c05d4
6b4a7ef
 
 
 
 
 
 
 
 
 
 
 
71c05d4
6b4a7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71c05d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import json
import time
import torch
import requests
import gradio as gr
import pandas as pd
from typing import List, Dict, Any, Optional, Union, Callable, Tuple
from agent import EnhancedGAIAAgent  # Импорт из отдельного файла

# Константы
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_RETRIES = 3
RETRY_DELAY = 5

class EvaluationRunner:
    """Обрабатывает процесс оценки: получение вопросов, запуск агента, отправку ответов"""
    
    def __init__(self, api_url=DEFAULT_API_URL):
        self.api_url = api_url
        self.questions_url = f"{api_url}/questions"
        self.submit_url = f"{api_url}/submit"
        self.results_url = f"{api_url}/results"
        self.correct_answers = 0
        self.total_questions = 0
    
    def run_evaluation(self, 
                      agent: Callable[[str], str], 
                      username: str, 
                      agent_code: str) -> tuple[str, pd.DataFrame]:
        # Получаем вопросы
        questions_data = self._fetch_questions()
        if isinstance(questions_data, str):  # Сообщение об ошибке
            return questions_data, None
        
        # Запускаем агента на всех вопросах
        results_log, answers_payload = self._run_agent_on_questions(agent, questions_data)
        if not answers_payload:
            return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
        
        # Отправляем ответы
        submission_result = self._submit_answers(username, agent_code, answers_payload)
        
        # Проверяем результаты
        self._check_results(username)
        self.print_evaluation_summary(username)
        
        return submission_result, pd.DataFrame(results_log)
    
    def _fetch_questions(self) -> Union[List[Dict[str, Any]], str]:
        try:
            response = requests.get(self.questions_url, timeout=15)
            response.raise_for_status()
            questions_data = response.json()
            
            if not questions_data:
                return "Fetched questions list is empty or invalid format."
            
            self.total_questions = len(questions_data)
            print(f"Successfully fetched {self.total_questions} questions.")
            return questions_data
            
        except Exception as e:
            return f"Error fetching questions: {e}"
    
    def _run_agent_on_questions(self, 
                               agent: Any, 
                               questions_data: List[Dict[str, Any]]) -> tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
        results_log = []
        answers_payload = []
        
        print(f"Running agent on {len(questions_data)} questions...")
        for item in questions_data:
            task_id = item.get("task_id")
            question_text = item.get("question")
            
            if not task_id or question_text is None:
                continue
            
            try:
                json_response = agent(question_text, task_id)
                response_obj = json.loads(json_response)
                submitted_answer = response_obj.get("final_answer", "")
                
                answers_payload.append({
                    "task_id": task_id, 
                    "submitted_answer": submitted_answer
                })
                
                results_log.append({
                    "Task ID": task_id, 
                    "Question": question_text, 
                    "Submitted Answer": submitted_answer,
                    "Full Response": json_response
                })
            except Exception as e:
                results_log.append({
                    "Task ID": task_id, 
                    "Question": question_text, 
                    "Submitted Answer": f"AGENT ERROR: {e}"
                })
        
        return results_log, answers_payload
    
    def _submit_answers(self, 
                       username: str, 
                       agent_code: str, 
                       answers_payload: List[Dict[str, Any]]) -> str:
        submission_data = {
            "username": username.strip(),
            "agent_code": agent_code.strip(),  # Ключевое исправление: agent_code вместо agent_code_url
            "answers": answers_payload
        }
        
        print(f"Submitting {len(answers_payload)} answers to: {self.submit_url}")
        print("Submission data:", json.dumps(submission_data, indent=2))
        
        for attempt in range(1, MAX_RETRIES + 1):
            try:
                response = requests.post(
                    self.submit_url,
                    json=submission_data,
                    headers={"Content-Type": "application/json"},
                    timeout=30
                )
                response.raise_for_status()
                
                try:
                    result = response.json()
                    if "message" in result:
                        return result["message"]
                    return "Evaluation submitted successfully"
                except:
                    return f"Submission successful, but response was not JSON: {response.text}"
                    
            except Exception as e:
                print(f"Submission attempt {attempt} failed: {e}")
                time.sleep(RETRY_DELAY)
        
        return "Error submitting answers after multiple attempts"
    
    def _check_results(self, username: str) -> None:
        try:
            results_url = f"{self.results_url}?username={username}"
            response = requests.get(results_url, timeout=15)
            if response.status_code == 200:
                data = response.json()
                if isinstance(data, dict) and "score" in data:
                    self.correct_answers = int(data["score"])
        except Exception as e:
            print(f"Error checking results: {e}")
    
    def get_correct_answers_count(self) -> int:
        return self.correct_answers
    
    def get_total_questions_count(self) -> int:
        return self.total_questions
    
    def print_evaluation_summary(self, username: str) -> None:
        print("\n===== EVALUATION SUMMARY =====")
        print(f"User: {username}")
        print(f"Overall Score: {self.correct_answers}/{self.total_questions}")
        print("=============================\n")


def run_evaluation(username: str, 
                  agent_code: str,  # Исправлено имя параметра
                  model_name: str = "google/flan-t5-base",
                  use_cache: bool = False) -> Tuple[str, int, int, str, str, str]:  # Кэш отключен по умолчанию
    start_time = time.time()
    
    # Инициализируем агента
    agent = EnhancedGAIAAgent(model_name=model_name, use_cache=use_cache)
    
    # Инициализируем runner
    runner = EvaluationRunner(api_url=DEFAULT_API_URL)
    
    # Запускаем оценку
    result, results_log = runner.run_evaluation(agent, username, agent_code)
    
    # Вычисляем время выполнения
    elapsed_time = time.time() - start_time
    elapsed_time_str = f"{elapsed_time:.2f} seconds"
    
    # Формируем URL результатов
    results_url = f"{DEFAULT_API_URL}/results?username={username}"
    cache_status = "Cache enabled and used" if use_cache else "Cache disabled"
    
    return (
        result,                          
        runner.get_correct_answers_count(),
        runner.get_total_questions_count(),
        elapsed_time_str,
        results_url,
        cache_status
    )


def create_gradio_interface():
    with gr.Blocks(title="GAIA Agent Evaluation") as demo:
        gr.Markdown("# GAIA Agent Evaluation")
        
        with gr.Row():
            with gr.Column():
                username = gr.Textbox(label="Hugging Face Username")
                agent_code = gr.Textbox(label="Agent Code", lines=2, placeholder="Your agent code here")
                model_name = gr.Dropdown(
                    label="Model",
                    choices=["google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large"],
                    value="google/flan-t5-base"
                )
                use_cache = gr.Checkbox(label="Use Answer Cache", value=False)
                run_button = gr.Button("Run Evaluation & Submit All Answers")
            
            with gr.Column():
                result_text = gr.Textbox(label="Result", lines=2)
                correct_answers = gr.Number(label="Correct Answers")
                total_questions = gr.Number(label="Total Questions")
                elapsed_time = gr.Textbox(label="Elapsed Time")
                results_url = gr.Textbox(label="Results URL")
                cache_status = gr.Textbox(label="Cache Status")
        
        run_button.click(
            fn=run_evaluation,
            inputs=[username, agent_code, model_name, use_cache],
            outputs=[
                result_text,
                correct_answers,
                total_questions,
                elapsed_time,
                results_url,
                cache_status
            ]
        )
    
    return demo


if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(share=True)