File size: 21,839 Bytes
6a2aeb0 ecb4e3d 737fe0e ecb4e3d 737fe0e 6a2aeb0 737fe0e 6a2aeb0 ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 6a2aeb0 ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e 6a2aeb0 ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e 865c342 ecb4e3d 737fe0e ecb4e3d 737fe0e ebc1313 737fe0e ebc1313 ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e 6a2aeb0 ecb4e3d 737fe0e 6a2aeb0 737fe0e ecb4e3d 737fe0e 865c342 6a2aeb0 737fe0e 6a2aeb0 737fe0e 6a2aeb0 737fe0e 6a2aeb0 ecb4e3d 737fe0e ecb4e3d 6a2aeb0 737fe0e ecb4e3d 6a2aeb0 737fe0e 6a2aeb0 737fe0e 6a2aeb0 ecb4e3d 737fe0e 6a2aeb0 737fe0e 6a2aeb0 737fe0e 6a2aeb0 737fe0e ebc1313 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e af37df4 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 865c342 737fe0e 865c342 737fe0e 865c342 ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d 737fe0e ecb4e3d af37df4 ecb4e3d 737fe0e ecb4e3d 737fe0e 6a2aeb0 865c342 737fe0e ecb4e3d 737fe0e 865c342 737fe0e 865c342 737fe0e ecb4e3d 737fe0e 6a2aeb0 865c342 737fe0e ecb4e3d 6a2aeb0 ec14f23 6a2aeb0 ecb4e3d 865c342 737fe0e 865c342 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
import re
import requests
import pandas as pd
import torch
import gradio as gr
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from typing import List, Dict, Any, Tuple, Optional
import json
import ast
import numpy as np
from PIL import Image, UnidentifiedImageError
import io
import base64
import logging
import time
import sys
# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("GAIA-Mastermind")
# Конфигурация
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MODEL_NAME = "google/flan-t5-xxl"
API_RETRIES = 3
API_TIMEOUT = 45
# === ЯДРО СИСТЕМЫ (без зависимостей от llama_index) ===
class GAIAThoughtProcessor:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"⚡ Инициализация GAIAThoughtProcessor на {self.device.upper()}")
# Оптимизированная загрузка модели
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
self.model = AutoModelForSeq2SeqLM.from_pretrained(
MODEL_NAME,
device_map="auto",
torch_dtype=torch.float16 if "cuda" in self.device else torch.float32,
low_cpu_mem_usage=True
).eval()
# Создаем пайплайн для генерации текста
self.text_generator = pipeline(
"text2text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=self.device,
max_new_tokens=512
)
logger.info("✅ GAIAThoughtProcessor готов")
def _math_solver(self, expression: str) -> str:
"""Безопасное вычисление математических выражений"""
try:
# Очистка выражения
clean_expr = re.sub(r"[^0-9+\-*/().^√π]", "", expression)
# Поддержка математических функций
context = {
"sqrt": np.sqrt,
"log": np.log,
"log10": np.log10,
"pi": np.pi,
"e": np.e,
"sin": np.sin,
"cos": np.cos,
"tan": np.tan
}
return str(eval(clean_expr, {"__builtins__": None}, context))
except Exception as e:
logger.error(f"Math error: {e}")
return f"Math Error: {str(e)}"
def _table_analyzer(self, table_data: str, query: str) -> str:
"""Анализ табличных данных"""
try:
# Автоопределение формата таблицы
if "\t" in table_data:
df = pd.read_csv(io.StringIO(table_data), sep="\t")
elif "," in table_data:
df = pd.read_csv(io.StringIO(table_data))
else:
df = pd.read_fwf(io.StringIO(table_data))
# Выполнение запросов
query = query.lower()
if "sum" in query:
return str(df.sum(numeric_only=True).to_dict())
elif "mean" in query:
return str(df.mean(numeric_only=True).to_dict())
elif "max" in query:
return str(df.max(numeric_only=True).to_dict())
elif "min" in query:
return str(df.min(numeric_only=True).to_dict())
elif "count" in query:
return str(df.count().to_dict())
else:
return df.describe().to_string()
except Exception as e:
logger.error(f"Table error: {e}")
return f"Table Error: {str(e)}"
def _text_processor(self, text: str, operation: str) -> str:
"""Операции с текстом"""
operation = operation.lower()
if operation == "reverse":
return text[::-1]
elif operation == "count_words":
return str(len(text.split()))
elif operation == "extract_numbers":
return ", ".join(re.findall(r"[-+]?\d*\.\d+|\d+", text))
elif operation == "uppercase":
return text.upper()
elif operation == "lowercase":
return text.lower()
else:
return f"Unsupported operation: {operation}"
def _image_processor(self, image_input: str) -> str:
"""Обработка изображений"""
try:
# Обработка URL
if image_input.startswith("http"):
response = requests.get(image_input, timeout=30)
response.raise_for_status()
img_data = response.content
img = Image.open(io.BytesIO(img_data))
# Обработка base64
elif image_input.startswith("data:image"):
header, data = image_input.split(",", 1)
img_data = base64.b64decode(data)
img = Image.open(io.BytesIO(img_data))
else:
return "Invalid image format"
# Базовый анализ изображения
description = (
f"Format: {img.format}, Size: {img.size}, "
f"Mode: {img.mode}, Colors: {len(set(img.getdata()))}"
)
return description
except (UnidentifiedImageError, requests.exceptions.RequestException) as e:
logger.error(f"Image processing error: {e}")
return f"Image Error: {str(e)}"
except Exception as e:
logger.exception("Unexpected image error")
return f"Unexpected Error: {str(e)}"
def _call_tool(self, tool_name: str, arguments: str) -> str:
"""Вызов инструмента по имени"""
try:
# Парсинг аргументов
args = [a.strip() for a in arguments.split(",")]
if tool_name == "math_solver":
return self._math_solver(args[0])
elif tool_name == "table_analyzer":
return self._table_analyzer(args[0], args[1])
elif tool_name == "text_processor":
return self._text_processor(args[0], args[1])
elif tool_name == "image_processor":
return self._image_processor(args[0])
else:
return f"Unknown tool: {tool_name}"
except Exception as e:
return f"Tool Error: {str(e)}"
def _generate_response(self, prompt: str) -> str:
"""Генерация ответа с помощью модели"""
try:
result = self.text_generator(
prompt,
max_new_tokens=256,
num_beams=3,
early_stopping=True,
temperature=0.01
)
return result[0]['generated_text']
except Exception as e:
logger.error(f"Generation error: {e}")
return f"Generation Error: {str(e)}"
finally:
# Очистка памяти GPU
if "cuda" in self.device:
torch.cuda.empty_cache()
def process_question(self, question: str, task_id: str) -> str:
"""Обработка вопроса с декомпозицией на шаги"""
try:
# Шаг 1: Декомпозиция задачи
decomposition_prompt = (
f"Декомпозируй задачу GAIA ({task_id}) на шаги. "
f"Используй инструменты: math_solver, table_analyzer, text_processor, image_processor.\n\n"
f"Задача: {question}\n\n"
"Шаги (формат: [tool_name] arguments):"
)
steps_response = self._generate_response(decomposition_prompt)
steps = [s.strip() for s in steps_response.split("\n") if s.strip()]
# Шаг 2: Выполнение шагов
results = []
for step in steps:
if step:
try:
# Извлечение инструмента и аргументов
match = re.match(r"\[(\w+)\]\s*(.+)", step)
if match:
tool_name = match.group(1)
arguments = match.group(2)
result = self._call_tool(tool_name, arguments)
results.append(f"{step} -> {result}")
else:
results.append(f"{step} -> ERROR: Invalid format")
except Exception as e:
results.append(f"{step} -> ERROR: {str(e)}")
# Шаг 3: Синтез финального ответа
synthesis_prompt = (
f"Задача GAIA {task_id}:\n{question}\n\n"
"Выполненные шаги:\n" + "\n".join(results) +
"\n\nФинальный ответ в формате JSON (только поле final_answer):"
)
final_response = self._generate_response(synthesis_prompt)
# Извлечение чистого ответа
if "final_answer" in final_response:
return json.dumps({"final_answer": final_response})
else:
# Попробуем извлечь ответ из текста
answer_match = re.search(r'\{.*\}', final_response, re.DOTALL)
if answer_match:
return answer_match.group(0)
else:
return json.dumps({"final_answer": final_response.strip()})
except Exception as e:
logger.exception("Processing failed")
return json.dumps({
"task_id": task_id,
"error": str(e),
"final_answer": f"SYSTEM ERROR: {str(e)}"
})
# === СИСТЕМА ОЦЕНКИ ===
class GAIAEvaluationRunner:
def __init__(self, api_url: str = DEFAULT_API_URL):
self.api_url = api_url
self.questions_url = f"{api_url}/questions"
self.submit_url = f"{api_url}/submit"
self.session = requests.Session()
self.session.headers.update({
"Accept": "application/json",
"User-Agent": "GAIA-Mastermind/1.0",
"Content-Type": "application/json"
})
logger.info(f"🌐 Инициализирован GAIAEvaluationRunner для {api_url}")
def run_evaluation(self, agent, username: str, agent_code: str, progress=tqdm):
# Получение вопросов
questions, status = self._fetch_questions()
if status != "success":
return status, 0, 0, pd.DataFrame()
# Обработка вопросов
results = []
answers = []
for i, q in enumerate(progress(questions, desc="🧠 Processing GAIA")):
try:
task_id = q.get("task_id", f"unknown_{i}")
json_response = agent.process_question(q["question"], task_id)
# Парсинг ответа
try:
response_obj = json.loads(json_response)
final_answer = response_obj.get("final_answer", "")
if not isinstance(final_answer, str):
final_answer = str(final_answer)
except json.JSONDecodeError:
final_answer = json_response
# Формирование ответа для GAIA API
answers.append({
"task_id": task_id,
"answer": final_answer[:500] # Ограничение длины
})
# Запись результатов
results.append({
"Task ID": task_id,
"Question": q["question"][:150] + "..." if len(q["question"]) > 150 else q["question"],
"Answer": final_answer[:200],
"Status": "Processed"
})
except Exception as e:
logger.error(f"Task {task_id} failed: {e}")
answers.append({
"task_id": task_id,
"answer": f"ERROR: {str(e)}"
})
results.append({
"Task ID": task_id,
"Question": "Error",
"Answer": f"ERROR: {str(e)}",
"Status": "Failed"
})
# Отправка ответов
submission_result, score = self._submit_answers(username, agent_code, answers)
return submission_result, score, len(questions), pd.DataFrame(results)
def _fetch_questions(self) -> Tuple[list, str]:
"""Получение вопросов с API"""
for _ in range(API_RETRIES):
try:
response = self.session.get(
self.questions_url,
timeout=API_TIMEOUT
)
if response.status_code == 200:
questions = response.json()
if not isinstance(questions, list):
return [], "Invalid response format: expected list"
# Добавление task_id если отсутствует
for q in questions:
q.setdefault("task_id", f"id_{hash(q['question']) % 100000}")
return questions, "success"
elif response.status_code == 429:
logger.warning("Rate limited, retrying...")
time.sleep(5)
continue
else:
return [], f"API error: HTTP {response.status_code}"
except Exception as e:
logger.error(f"Fetch error: {e}")
return [], f"Connection error: {str(e)}"
return [], "API unavailable after retries"
def _submit_answers(self, username: str, agent_code: str, answers: list) -> Tuple[str, int]:
"""Отправка ответов на сервер"""
payload = {
"username": username.strip(),
"agent_code": agent_code.strip(),
"answers": answers
}
for attempt in range(API_RETRIES):
try:
response = self.session.post(
self.submit_url,
json=payload,
timeout=API_TIMEOUT * 2
)
if response.status_code == 200:
result = response.json()
score = result.get("score", 0)
return result.get("message", "Answers submitted"), score
elif response.status_code == 400:
error = response.json().get("error", "Invalid request")
logger.error(f"Validation error: {error}")
return f"Validation Error: {error}", 0
elif response.status_code == 429:
logger.warning("Rate limited, retrying...")
time.sleep(10)
continue
else:
return f"HTTP Error {response.status_code}", 0
except Exception as e:
logger.error(f"Submit error: {e}")
return f"Connection Error: {str(e)}", 0
return "Submission failed after retries", 0
# === ИНТЕРФЕЙС GRADIO ===
def run_evaluation(username: str, agent_code: str, progress=gr.Progress()):
progress(0, desc="⚡ Инициализация GAIA Mastermind...")
try:
agent = GAIAThoughtProcessor()
except Exception as e:
logger.exception("Agent initialization failed")
return f"Agent Error: {str(e)}", 0, 0, pd.DataFrame()
progress(0.1, desc="🌐 Подключение к GAIA API...")
runner = GAIAEvaluationRunner()
# Получение вопросов
questions, status = runner._fetch_questions()
if status != "success":
return status, 0, 0, pd.DataFrame()
# Обработка вопросов с прогрессом
results = []
answers = []
total = len(questions)
for i, q in enumerate(questions):
progress(i / total, desc=f"🧠 Обработка задач ({i+1}/{total})")
try:
task_id = q.get("task_id", f"unknown_{i}")
json_response = agent.process_question(q["question"], task_id)
# Парсинг ответа
try:
response_obj = json.loads(json_response)
final_answer = response_obj.get("final_answer", "")
except:
final_answer = json_response
answers.append({
"task_id": task_id,
"answer": str(final_answer)[:500]
})
results.append({
"Task ID": task_id,
"Question": q["question"][:150] + "..." if len(q["question"]) > 150 else q["question"],
"Answer": str(final_answer)[:200],
"Status": "Processed"
})
except Exception as e:
logger.error(f"Task {task_id} failed: {e}")
answers.append({
"task_id": task_id,
"answer": f"ERROR: {str(e)}"
})
results.append({
"Task ID": task_id,
"Question": "Error",
"Answer": f"ERROR: {str(e)}",
"Status": "Failed"
})
# Отправка ответов
submission_result, score = runner._submit_answers(username, agent_code, answers)
return submission_result, score, total, pd.DataFrame(results)
# Создание интерфейса
with gr.Blocks(
title="🧠 GAIA Mastermind",
theme=gr.themes.Soft(),
css="""
.gradio-container {background: linear-gradient(135deg, #1a2a6c, #2c5364)}
.dark {color: #f0f0f0}
"""
) as demo:
gr.Markdown("""
<div style="text-align:center; background: linear-gradient(135deg, #0f2027, #203a43);
padding: 20px; border-radius: 15px; color: white; box-shadow: 0 10px 20px rgba(0,0,0,0.3);">
<h1>🧠 GAIA Mastermind</h1>
<h3>Многошаговое решение задач с декомпозицией</h3>
<p>Соответствует спецификации GAIA API</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 🔐 Авторизация")
username = gr.Textbox(
label="HF Username",
value="yoshizen",
info="Ваше имя пользователя Hugging Face"
)
agent_code = gr.Textbox(
label="Agent Code",
value="https://huggingface.co/spaces/yoshizen/FinalTest",
info="URL вашего агента"
)
run_btn = gr.Button("🚀 Запустить оценку", variant="primary", scale=1)
gr.Markdown("### ⚙️ Статус системы")
sys_info = gr.Textbox(label="Системная информация", interactive=False, value="")
with gr.Column(scale=2):
gr.Markdown("### 📊 Результаты GAIA")
with gr.Row():
result_output = gr.Textbox(
label="Статус отправки",
interactive=False,
max_lines=3
)
correct_output = gr.Number(
label="✅ Правильные ответы",
interactive=False
)
total_output = gr.Number(
label="📚 Всего вопросов",
interactive=False
)
with gr.Row():
results_table = gr.Dataframe(
label="🔍 Детализация ответов",
headers=["Task ID", "Question", "Answer", "Status"],
interactive=False,
wrap=True,
overflow_row_behaviour="paginate",
height=400,
column_widths=["15%", "35%", "40%", "10%"]
)
# Системная информация
def get_system_info():
device = "GPU ✅" if torch.cuda.is_available() else "CPU ⚠️"
return f"Device: {device} | Model: {MODEL_NAME} | API: {DEFAULT_API_URL}"
demo.load(get_system_info, inputs=None, outputs=sys_info)
run_btn.click(
fn=run_evaluation,
inputs=[username, agent_code],
outputs=[result_output, correct_output, total_output, results_table],
concurrency_limit=1,
show_progress="minimal"
)
if __name__ == "__main__":
demo.queue(max_size=5).launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
debug=False
) |