FinalTest / app.py
yoshizen's picture
Update app.py
865c342 verified
raw
history blame
7.75 kB
import re
import requests
import pandas as pd
import torch
import gradio as gr
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import json # Добавлен отсутствующий импорт
# Конфигурация
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MODEL_NAME = "google/flan-t5-large"
class GAIAExpertAgent:
def __init__(self, model_name: str = MODEL_NAME):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"⚡ Инициализация агента на {self.device.upper()}")
# Оптимизация загрузки модели
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.float16 if "cuda" in self.device else torch.float32,
low_cpu_mem_usage=True # Снижение потребления CPU памяти
).eval()
print("✅ Агент готов")
def __call__(self, question: str, task_id: str = None) -> str:
try:
# Убраны жесткие эвристики - они мешают реальным задачам GAIA
inputs = self.tokenizer(
f"Solve step-by-step: {question}\nFinal Answer:",
return_tensors="pt",
max_length=512, # Увеличен контекст
truncation=True
).to(self.device)
# Улучшена генерация
outputs = self.model.generate(
**inputs,
max_new_tokens=256, # Увеличен лимит для сложных ответов
num_beams=5, # Улучшено качество поиска
early_stopping=True,
repetition_penalty=2.0 # Предотвращение циклов
)
answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Очистка памяти CUDA
if "cuda" in self.device:
torch.cuda.empty_cache()
return json.dumps({"final_answer": answer.strip()})
except Exception as e:
return json.dumps({"final_answer": f"ERROR: {str(e)}"})
class EvaluationRunner:
def __init__(self, api_url: str = DEFAULT_API_URL):
self.api_url = api_url
self.questions_url = f"{api_url}/questions"
self.submit_url = f"{api_url}/submit"
self.session = requests.Session() # Сессия для повторных запросов
def run_evaluation(self, agent, username: str, agent_code: str, progress=tqdm):
# Получение вопросов
questions = self._fetch_questions()
if not isinstance(questions, list):
return questions, 0, 0, pd.DataFrame()
# Обработка вопросов
results = []
answers = []
for q in progress(questions, desc="Processing GAIA tasks"):
try:
json_response = agent(q["question"], q["task_id"])
response_obj = json.loads(json_response)
answer = response_obj.get("final_answer", "")
answers.append({
"task_id": q["task_id"],
"submitted_answer": str(answer)[:500] # Увеличен лимит
})
results.append({
"Task ID": q["task_id"],
"Question": q["question"],
"Answer": str(answer)
})
except Exception as e:
results.append({
"Task ID": q.get("task_id", "N/A"),
"Question": "Error",
"Answer": f"ERROR: {str(e)}"
})
# Отправка ответов
submission_result = self._submit_answers(username, agent_code, answers)
return submission_result, 0, len(questions), pd.DataFrame(results)
def _fetch_questions(self):
try:
response = self.session.get(
self.questions_url,
timeout=60, # Увеличен таймаут
headers={"Accept": "application/json"}
)
response.raise_for_status()
return response.json()
except Exception as e:
return f"Ошибка получения вопросов: {str(e)}"
def _submit_answers(self, username: str, agent_code: str, answers: list):
try:
response = self.session.post(
self.submit_url,
json={
"username": username.strip(),
"agent_code": agent_code.strip(),
"answers": answers
},
timeout=120 # Увеличен таймаут
)
response.raise_for_status()
return response.json().get("message", "Ответы успешно отправлены")
except Exception as e:
return f"Ошибка отправки: {str(e)}"
# Важно: Инициализация агента при запуске, а не при импорте
def run_evaluation(username: str, agent_code: str, progress=gr.Progress()):
progress(0, desc="Инициализация модели...")
agent = GAIAExpertAgent()
progress(0, desc="Запуск оценки...")
runner = EvaluationRunner()
# Обертка tqdm для Gradio Progress
class ProgressWrapper:
def __call__(self, iterable, desc=""):
progress(0, desc=desc)
for i, x in enumerate(iterable):
progress(i / len(iterable))
yield x
return runner.run_evaluation(agent, username, agent_code, progress=ProgressWrapper())
# Оптимизированный интерфейс Gradio
with gr.Blocks(title="GAIA Agent", theme=gr.themes.Soft()) as demo:
gr.Markdown("""# 🧠 GAIA Mastermind Agent
## *Многошаговое решение сложных задач*""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 🔐 Авторизация")
username = gr.Textbox(label="HF Username", value="yoshizen")
agent_code = gr.Textbox(label="Agent Code", value="https://huggingface.co/spaces/yoshizen/FinalTest")
run_btn = gr.Button("Запустить оценку", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### 📊 Результаты")
with gr.Row():
result_output = gr.Textbox(label="Статус")
correct_output = gr.Number(label="Правильные ответы")
total_output = gr.Number(label="Всего вопросов")
results_table = gr.Dataframe(
label="Детализация ответов",
interactive=True,
wrap=True,
overflow_row_behaviour="paginate",
height=500
)
run_btn.click(
fn=run_evaluation,
inputs=[username, agent_code],
outputs=[result_output, correct_output, total_output, results_table],
concurrency_limit=1 # Защита от перегрузки
)
if __name__ == "__main__":
demo.queue(max_size=10).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)