FinalTest / app.py
yoshizen's picture
Update app.py
ecb4e3d verified
raw
history blame
21.8 kB
import re
import requests
import pandas as pd
import torch
import gradio as gr
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from typing import List, Dict, Any, Tuple, Optional
import json
import ast
import numpy as np
from PIL import Image, UnidentifiedImageError
import io
import base64
import logging
import time
import sys
# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("GAIA-Mastermind")
# Конфигурация
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MODEL_NAME = "google/flan-t5-xxl"
API_RETRIES = 3
API_TIMEOUT = 45
# === ЯДРО СИСТЕМЫ (без зависимостей от llama_index) ===
class GAIAThoughtProcessor:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"⚡ Инициализация GAIAThoughtProcessor на {self.device.upper()}")
# Оптимизированная загрузка модели
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
self.model = AutoModelForSeq2SeqLM.from_pretrained(
MODEL_NAME,
device_map="auto",
torch_dtype=torch.float16 if "cuda" in self.device else torch.float32,
low_cpu_mem_usage=True
).eval()
# Создаем пайплайн для генерации текста
self.text_generator = pipeline(
"text2text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=self.device,
max_new_tokens=512
)
logger.info("✅ GAIAThoughtProcessor готов")
def _math_solver(self, expression: str) -> str:
"""Безопасное вычисление математических выражений"""
try:
# Очистка выражения
clean_expr = re.sub(r"[^0-9+\-*/().^√π]", "", expression)
# Поддержка математических функций
context = {
"sqrt": np.sqrt,
"log": np.log,
"log10": np.log10,
"pi": np.pi,
"e": np.e,
"sin": np.sin,
"cos": np.cos,
"tan": np.tan
}
return str(eval(clean_expr, {"__builtins__": None}, context))
except Exception as e:
logger.error(f"Math error: {e}")
return f"Math Error: {str(e)}"
def _table_analyzer(self, table_data: str, query: str) -> str:
"""Анализ табличных данных"""
try:
# Автоопределение формата таблицы
if "\t" in table_data:
df = pd.read_csv(io.StringIO(table_data), sep="\t")
elif "," in table_data:
df = pd.read_csv(io.StringIO(table_data))
else:
df = pd.read_fwf(io.StringIO(table_data))
# Выполнение запросов
query = query.lower()
if "sum" in query:
return str(df.sum(numeric_only=True).to_dict())
elif "mean" in query:
return str(df.mean(numeric_only=True).to_dict())
elif "max" in query:
return str(df.max(numeric_only=True).to_dict())
elif "min" in query:
return str(df.min(numeric_only=True).to_dict())
elif "count" in query:
return str(df.count().to_dict())
else:
return df.describe().to_string()
except Exception as e:
logger.error(f"Table error: {e}")
return f"Table Error: {str(e)}"
def _text_processor(self, text: str, operation: str) -> str:
"""Операции с текстом"""
operation = operation.lower()
if operation == "reverse":
return text[::-1]
elif operation == "count_words":
return str(len(text.split()))
elif operation == "extract_numbers":
return ", ".join(re.findall(r"[-+]?\d*\.\d+|\d+", text))
elif operation == "uppercase":
return text.upper()
elif operation == "lowercase":
return text.lower()
else:
return f"Unsupported operation: {operation}"
def _image_processor(self, image_input: str) -> str:
"""Обработка изображений"""
try:
# Обработка URL
if image_input.startswith("http"):
response = requests.get(image_input, timeout=30)
response.raise_for_status()
img_data = response.content
img = Image.open(io.BytesIO(img_data))
# Обработка base64
elif image_input.startswith("data:image"):
header, data = image_input.split(",", 1)
img_data = base64.b64decode(data)
img = Image.open(io.BytesIO(img_data))
else:
return "Invalid image format"
# Базовый анализ изображения
description = (
f"Format: {img.format}, Size: {img.size}, "
f"Mode: {img.mode}, Colors: {len(set(img.getdata()))}"
)
return description
except (UnidentifiedImageError, requests.exceptions.RequestException) as e:
logger.error(f"Image processing error: {e}")
return f"Image Error: {str(e)}"
except Exception as e:
logger.exception("Unexpected image error")
return f"Unexpected Error: {str(e)}"
def _call_tool(self, tool_name: str, arguments: str) -> str:
"""Вызов инструмента по имени"""
try:
# Парсинг аргументов
args = [a.strip() for a in arguments.split(",")]
if tool_name == "math_solver":
return self._math_solver(args[0])
elif tool_name == "table_analyzer":
return self._table_analyzer(args[0], args[1])
elif tool_name == "text_processor":
return self._text_processor(args[0], args[1])
elif tool_name == "image_processor":
return self._image_processor(args[0])
else:
return f"Unknown tool: {tool_name}"
except Exception as e:
return f"Tool Error: {str(e)}"
def _generate_response(self, prompt: str) -> str:
"""Генерация ответа с помощью модели"""
try:
result = self.text_generator(
prompt,
max_new_tokens=256,
num_beams=3,
early_stopping=True,
temperature=0.01
)
return result[0]['generated_text']
except Exception as e:
logger.error(f"Generation error: {e}")
return f"Generation Error: {str(e)}"
finally:
# Очистка памяти GPU
if "cuda" in self.device:
torch.cuda.empty_cache()
def process_question(self, question: str, task_id: str) -> str:
"""Обработка вопроса с декомпозицией на шаги"""
try:
# Шаг 1: Декомпозиция задачи
decomposition_prompt = (
f"Декомпозируй задачу GAIA ({task_id}) на шаги. "
f"Используй инструменты: math_solver, table_analyzer, text_processor, image_processor.\n\n"
f"Задача: {question}\n\n"
"Шаги (формат: [tool_name] arguments):"
)
steps_response = self._generate_response(decomposition_prompt)
steps = [s.strip() for s in steps_response.split("\n") if s.strip()]
# Шаг 2: Выполнение шагов
results = []
for step in steps:
if step:
try:
# Извлечение инструмента и аргументов
match = re.match(r"\[(\w+)\]\s*(.+)", step)
if match:
tool_name = match.group(1)
arguments = match.group(2)
result = self._call_tool(tool_name, arguments)
results.append(f"{step} -> {result}")
else:
results.append(f"{step} -> ERROR: Invalid format")
except Exception as e:
results.append(f"{step} -> ERROR: {str(e)}")
# Шаг 3: Синтез финального ответа
synthesis_prompt = (
f"Задача GAIA {task_id}:\n{question}\n\n"
"Выполненные шаги:\n" + "\n".join(results) +
"\n\nФинальный ответ в формате JSON (только поле final_answer):"
)
final_response = self._generate_response(synthesis_prompt)
# Извлечение чистого ответа
if "final_answer" in final_response:
return json.dumps({"final_answer": final_response})
else:
# Попробуем извлечь ответ из текста
answer_match = re.search(r'\{.*\}', final_response, re.DOTALL)
if answer_match:
return answer_match.group(0)
else:
return json.dumps({"final_answer": final_response.strip()})
except Exception as e:
logger.exception("Processing failed")
return json.dumps({
"task_id": task_id,
"error": str(e),
"final_answer": f"SYSTEM ERROR: {str(e)}"
})
# === СИСТЕМА ОЦЕНКИ ===
class GAIAEvaluationRunner:
def __init__(self, api_url: str = DEFAULT_API_URL):
self.api_url = api_url
self.questions_url = f"{api_url}/questions"
self.submit_url = f"{api_url}/submit"
self.session = requests.Session()
self.session.headers.update({
"Accept": "application/json",
"User-Agent": "GAIA-Mastermind/1.0",
"Content-Type": "application/json"
})
logger.info(f"🌐 Инициализирован GAIAEvaluationRunner для {api_url}")
def run_evaluation(self, agent, username: str, agent_code: str, progress=tqdm):
# Получение вопросов
questions, status = self._fetch_questions()
if status != "success":
return status, 0, 0, pd.DataFrame()
# Обработка вопросов
results = []
answers = []
for i, q in enumerate(progress(questions, desc="🧠 Processing GAIA")):
try:
task_id = q.get("task_id", f"unknown_{i}")
json_response = agent.process_question(q["question"], task_id)
# Парсинг ответа
try:
response_obj = json.loads(json_response)
final_answer = response_obj.get("final_answer", "")
if not isinstance(final_answer, str):
final_answer = str(final_answer)
except json.JSONDecodeError:
final_answer = json_response
# Формирование ответа для GAIA API
answers.append({
"task_id": task_id,
"answer": final_answer[:500] # Ограничение длины
})
# Запись результатов
results.append({
"Task ID": task_id,
"Question": q["question"][:150] + "..." if len(q["question"]) > 150 else q["question"],
"Answer": final_answer[:200],
"Status": "Processed"
})
except Exception as e:
logger.error(f"Task {task_id} failed: {e}")
answers.append({
"task_id": task_id,
"answer": f"ERROR: {str(e)}"
})
results.append({
"Task ID": task_id,
"Question": "Error",
"Answer": f"ERROR: {str(e)}",
"Status": "Failed"
})
# Отправка ответов
submission_result, score = self._submit_answers(username, agent_code, answers)
return submission_result, score, len(questions), pd.DataFrame(results)
def _fetch_questions(self) -> Tuple[list, str]:
"""Получение вопросов с API"""
for _ in range(API_RETRIES):
try:
response = self.session.get(
self.questions_url,
timeout=API_TIMEOUT
)
if response.status_code == 200:
questions = response.json()
if not isinstance(questions, list):
return [], "Invalid response format: expected list"
# Добавление task_id если отсутствует
for q in questions:
q.setdefault("task_id", f"id_{hash(q['question']) % 100000}")
return questions, "success"
elif response.status_code == 429:
logger.warning("Rate limited, retrying...")
time.sleep(5)
continue
else:
return [], f"API error: HTTP {response.status_code}"
except Exception as e:
logger.error(f"Fetch error: {e}")
return [], f"Connection error: {str(e)}"
return [], "API unavailable after retries"
def _submit_answers(self, username: str, agent_code: str, answers: list) -> Tuple[str, int]:
"""Отправка ответов на сервер"""
payload = {
"username": username.strip(),
"agent_code": agent_code.strip(),
"answers": answers
}
for attempt in range(API_RETRIES):
try:
response = self.session.post(
self.submit_url,
json=payload,
timeout=API_TIMEOUT * 2
)
if response.status_code == 200:
result = response.json()
score = result.get("score", 0)
return result.get("message", "Answers submitted"), score
elif response.status_code == 400:
error = response.json().get("error", "Invalid request")
logger.error(f"Validation error: {error}")
return f"Validation Error: {error}", 0
elif response.status_code == 429:
logger.warning("Rate limited, retrying...")
time.sleep(10)
continue
else:
return f"HTTP Error {response.status_code}", 0
except Exception as e:
logger.error(f"Submit error: {e}")
return f"Connection Error: {str(e)}", 0
return "Submission failed after retries", 0
# === ИНТЕРФЕЙС GRADIO ===
def run_evaluation(username: str, agent_code: str, progress=gr.Progress()):
progress(0, desc="⚡ Инициализация GAIA Mastermind...")
try:
agent = GAIAThoughtProcessor()
except Exception as e:
logger.exception("Agent initialization failed")
return f"Agent Error: {str(e)}", 0, 0, pd.DataFrame()
progress(0.1, desc="🌐 Подключение к GAIA API...")
runner = GAIAEvaluationRunner()
# Получение вопросов
questions, status = runner._fetch_questions()
if status != "success":
return status, 0, 0, pd.DataFrame()
# Обработка вопросов с прогрессом
results = []
answers = []
total = len(questions)
for i, q in enumerate(questions):
progress(i / total, desc=f"🧠 Обработка задач ({i+1}/{total})")
try:
task_id = q.get("task_id", f"unknown_{i}")
json_response = agent.process_question(q["question"], task_id)
# Парсинг ответа
try:
response_obj = json.loads(json_response)
final_answer = response_obj.get("final_answer", "")
except:
final_answer = json_response
answers.append({
"task_id": task_id,
"answer": str(final_answer)[:500]
})
results.append({
"Task ID": task_id,
"Question": q["question"][:150] + "..." if len(q["question"]) > 150 else q["question"],
"Answer": str(final_answer)[:200],
"Status": "Processed"
})
except Exception as e:
logger.error(f"Task {task_id} failed: {e}")
answers.append({
"task_id": task_id,
"answer": f"ERROR: {str(e)}"
})
results.append({
"Task ID": task_id,
"Question": "Error",
"Answer": f"ERROR: {str(e)}",
"Status": "Failed"
})
# Отправка ответов
submission_result, score = runner._submit_answers(username, agent_code, answers)
return submission_result, score, total, pd.DataFrame(results)
# Создание интерфейса
with gr.Blocks(
title="🧠 GAIA Mastermind",
theme=gr.themes.Soft(),
css="""
.gradio-container {background: linear-gradient(135deg, #1a2a6c, #2c5364)}
.dark {color: #f0f0f0}
"""
) as demo:
gr.Markdown("""
<div style="text-align:center; background: linear-gradient(135deg, #0f2027, #203a43);
padding: 20px; border-radius: 15px; color: white; box-shadow: 0 10px 20px rgba(0,0,0,0.3);">
<h1>🧠 GAIA Mastermind</h1>
<h3>Многошаговое решение задач с декомпозицией</h3>
<p>Соответствует спецификации GAIA API</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 🔐 Авторизация")
username = gr.Textbox(
label="HF Username",
value="yoshizen",
info="Ваше имя пользователя Hugging Face"
)
agent_code = gr.Textbox(
label="Agent Code",
value="https://huggingface.co/spaces/yoshizen/FinalTest",
info="URL вашего агента"
)
run_btn = gr.Button("🚀 Запустить оценку", variant="primary", scale=1)
gr.Markdown("### ⚙️ Статус системы")
sys_info = gr.Textbox(label="Системная информация", interactive=False, value="")
with gr.Column(scale=2):
gr.Markdown("### 📊 Результаты GAIA")
with gr.Row():
result_output = gr.Textbox(
label="Статус отправки",
interactive=False,
max_lines=3
)
correct_output = gr.Number(
label="✅ Правильные ответы",
interactive=False
)
total_output = gr.Number(
label="📚 Всего вопросов",
interactive=False
)
with gr.Row():
results_table = gr.Dataframe(
label="🔍 Детализация ответов",
headers=["Task ID", "Question", "Answer", "Status"],
interactive=False,
wrap=True,
overflow_row_behaviour="paginate",
height=400,
column_widths=["15%", "35%", "40%", "10%"]
)
# Системная информация
def get_system_info():
device = "GPU ✅" if torch.cuda.is_available() else "CPU ⚠️"
return f"Device: {device} | Model: {MODEL_NAME} | API: {DEFAULT_API_URL}"
demo.load(get_system_info, inputs=None, outputs=sys_info)
run_btn.click(
fn=run_evaluation,
inputs=[username, agent_code],
outputs=[result_output, correct_output, total_output, results_table],
concurrency_limit=1,
show_progress="minimal"
)
if __name__ == "__main__":
demo.queue(max_size=5).launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
debug=False
)