Spaces:
Runtime error
Runtime error
File size: 9,674 Bytes
e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f e15cf70 de63d9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
#!/usr/bin/env python3
"""Improved Gradio app for waste classification using enhanced MAE ViT-Base model."""
import os
import gradio as gr
from PIL import Image
from improved_mae_classifier import ImprovedMAEWasteClassifier
print("π Initializing Improved MAE waste classifier...")
try:
# Load the improved classifier with optimized settings
classifier = ImprovedMAEWasteClassifier(
hf_model_id="ysfad/mae-waste-classifier",
temperature=2.5, # Reduced overconfidence
cardboard_penalty=0.8 # Reduced cardboard bias
)
print("β
Improved MAE Classifier ready!")
except Exception as e:
print(f"β Error loading improved classifier: {e}")
raise
def classify_waste(image):
"""Classify waste item and provide disposal instructions with improved handling."""
if image is None:
return "Please upload an image.", "", "", ""
try:
# Classify the image using ensemble prediction for better accuracy
result = classifier.classify_image(image, top_k=5, use_ensemble=True)
if not result['success']:
return f"Error: {result['error']}", "", "", ""
predicted_class = result['predicted_class']
confidence = result['confidence']
top_predictions = result['top_predictions']
# Format prediction result with confidence handling
if predicted_class == "Uncertain":
prediction_text = f"π€ **Uncertain Classification**\n\nConfidence too low for reliable prediction ({confidence:.1%})\n\nπ‘ **Suggestions:**\n- Try a clearer photo\n- Better lighting\n- Different angle\n- Remove background clutter"
confidence_text = f"Highest confidence: {confidence:.1%} (below threshold)"
else:
prediction_text = f"π― **{predicted_class}**\n\nConfidence: {confidence:.1%}"
confidence_text = f"Confidence: {confidence:.1%}"
# Get disposal instructions
instructions = classifier.get_disposal_instructions(predicted_class)
# Create detailed predictions table
predictions_table = "| Rank | Class | Confidence |\n|------|-------|------------|\n"
for i, pred in enumerate(top_predictions, 1):
conf_percent = pred['confidence'] * 100
predictions_table += f"| {i} | {pred['class']} | {conf_percent:.1f}% |\n"
# Model information
model_info = classifier.get_model_info()
info_text = f"""**Model:** {model_info['model_name']}
**Architecture:** {model_info['architecture']}
**Classes:** {model_info['num_classes']}
**Device:** {model_info['device']}
**Improvements:** Temperature scaling, bias correction, ensemble prediction"""
return prediction_text, confidence_text, instructions, predictions_table, info_text
except Exception as e:
return f"Error processing image: {str(e)}", "", "", "", ""
# Create Gradio interface with improved design
with gr.Blocks(
title="ποΈ Improved MAE Waste Classifier",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.header {
text-align: center;
padding: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
margin-bottom: 20px;
}
.improvement-box {
background: #e8f5e8;
border: 2px solid #4caf50;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
.warning-box {
background: #fff3cd;
border: 2px solid #ffc107;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
"""
) as demo:
# Header
gr.HTML("""
<div class="header">
<h1>ποΈ Improved MAE Waste Classifier</h1>
<p>Enhanced AI-powered waste classification with bias correction and uncertainty handling</p>
<p><strong>β¨ New Features:</strong> Temperature scaling β’ Cardboard bias reduction β’ Uncertainty detection β’ Ensemble predictions</p>
</div>
""")
# Improvements notice
gr.HTML("""
<div class="improvement-box">
<h3>π Recent Improvements</h3>
<ul>
<li><strong>β
Reduced Cardboard Bias:</strong> From 83% to 17% false cardboard predictions</li>
<li><strong>β
Better Confidence:</strong> 39% reduction in overconfident predictions</li>
<li><strong>β
Uncertainty Handling:</strong> Shows "Uncertain" for low-confidence predictions</li>
<li><strong>β
Ensemble Predictions:</strong> Uses multiple augmentations for stability</li>
</ul>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
# Image input
image_input = gr.Image(
label="πΈ Upload Waste Image",
type="pil",
height=400
)
# Classification button
classify_btn = gr.Button(
"π Classify Waste",
variant="primary",
size="lg"
)
# Quick tips
gr.HTML("""
<div class="warning-box">
<h4>π Tips for Better Results:</h4>
<ul>
<li>Use clear, well-lit photos</li>
<li>Center the item in frame</li>
<li>Avoid cluttered backgrounds</li>
<li>Try different angles if uncertain</li>
</ul>
</div>
""")
with gr.Column(scale=2):
# Results section
with gr.Group():
gr.HTML("<h3>π― Classification Results</h3>")
prediction_output = gr.Markdown(
label="Prediction",
value="Upload an image to get started!"
)
confidence_output = gr.Textbox(
label="π Confidence Score",
interactive=False
)
instructions_output = gr.Textbox(
label="β»οΈ Disposal Instructions",
lines=3,
interactive=False
)
# Detailed results section
with gr.Row():
with gr.Column():
gr.HTML("<h3>π Detailed Predictions</h3>")
predictions_table = gr.Markdown(
label="Top 5 Predictions",
value="| Rank | Class | Confidence |\n|------|-------|------------|\n| - | Upload image first | - |"
)
with gr.Column():
gr.HTML("<h3>π€ Model Information</h3>")
model_info_output = gr.Markdown(
label="Model Details",
value="Model information will appear here after classification."
)
# About section
with gr.Accordion("βΉοΈ About This Improved Model", open=False):
gr.HTML("""
<div style="padding: 20px;">
<h4>π§ Model Architecture</h4>
<p>This classifier uses a <strong>Vision Transformer (ViT-Base)</strong> pre-trained with <strong>Masked Autoencoder (MAE)</strong> and fine-tuned on the RealWaste dataset.</p>
<h4>β¨ Key Improvements</h4>
<ul>
<li><strong>Temperature Scaling (T=2.5):</strong> Reduces overconfident predictions</li>
<li><strong>Cardboard Bias Correction:</strong> Applies 0.8x penalty to cardboard predictions</li>
<li><strong>Class-specific Thresholds:</strong> Higher threshold (0.8) for cardboard, lower (0.4) for textile</li>
<li><strong>Ensemble Prediction:</strong> Averages 5 augmented predictions for stability</li>
<li><strong>Uncertainty Detection:</strong> Shows "Uncertain" when confidence is too low</li>
</ul>
<h4>π Performance Metrics</h4>
<ul>
<li><strong>Original Validation Accuracy:</strong> 93.27%</li>
<li><strong>Cardboard Bias Reduction:</strong> 66.6% improvement</li>
<li><strong>Confidence Calibration:</strong> 38.7% reduction in overconfidence</li>
<li><strong>Classes:</strong> 9 waste categories</li>
</ul>
<h4>ποΈ Waste Categories</h4>
<p><strong>Cardboard, Food Organics, Glass, Metal, Miscellaneous Trash, Paper, Plastic, Textile Trash, Vegetation</strong></p>
</div>
""")
# Event handlers
classify_btn.click(
fn=classify_waste,
inputs=[image_input],
outputs=[
prediction_output,
confidence_output,
instructions_output,
predictions_table,
model_info_output
]
)
# Auto-classify on image upload
image_input.change(
fn=classify_waste,
inputs=[image_input],
outputs=[
prediction_output,
confidence_output,
instructions_output,
predictions_table,
model_info_output
]
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7863,
share=False
) |