worldmem / app.py
xizaoqu
update
a7ea928
raw
history blame
18.2 kB
import gradio as gr
import time
import sys
import subprocess
import time
from pathlib import Path
import hydra
from omegaconf import DictConfig, OmegaConf
from omegaconf.omegaconf import open_dict
from utils.print_utils import cyan
from utils.ckpt_utils import download_latest_checkpoint, is_run_id
from utils.cluster_utils import submit_slurm_job
from utils.distributed_utils import is_rank_zero
import numpy as np
import torch
from datasets.video.minecraft_video_dataset import *
import torchvision.transforms as transforms
import cv2
import subprocess
from PIL import Image
from datetime import datetime
import spaces
from algorithms.worldmem import WorldMemMinecraft
from huggingface_hub import hf_hub_download
import tempfile
torch.set_float32_matmul_precision("high")
ACTION_KEYS = [
"inventory",
"ESC",
"hotbar.1",
"hotbar.2",
"hotbar.3",
"hotbar.4",
"hotbar.5",
"hotbar.6",
"hotbar.7",
"hotbar.8",
"hotbar.9",
"forward",
"back",
"left",
"right",
"cameraY",
"cameraX",
"jump",
"sneak",
"sprint",
"swapHands",
"attack",
"use",
"pickItem",
"drop",
]
# Mapping of input keys to action names
KEY_TO_ACTION = {
"Q": ("forward", 1),
"E": ("back", 1),
"W": ("cameraY", -1),
"S": ("cameraY", 1),
"A": ("cameraX", -1),
"D": ("cameraX", 1),
"U": ("drop", 1),
"N": ("noop", 1),
"1": ("hotbar.1", 1),
}
def load_custom_checkpoint(algo, checkpoint_path):
hf_ckpt = str(checkpoint_path).split('/')
repo_id = '/'.join(hf_ckpt[:2])
file_name = '/'.join(hf_ckpt[2:])
model_path = hf_hub_download(repo_id=repo_id,
filename=file_name)
ckpt = torch.load(model_path, map_location=torch.device('cpu'))
algo.load_state_dict(ckpt['state_dict'], strict=False)
def parse_input_to_tensor(input_str):
"""
Convert an input string into a (sequence_length, 25) tensor, where each row is a one-hot representation
of the corresponding action key.
Args:
input_str (str): A string consisting of "WASD" characters (e.g., "WASDWS").
Returns:
torch.Tensor: A tensor of shape (sequence_length, 25), where each row is a one-hot encoded action.
"""
# Get the length of the input sequence
seq_len = len(input_str)
# Initialize a zero tensor of shape (seq_len, 25)
action_tensor = torch.zeros((seq_len, 25))
# Iterate through the input string and update the corresponding positions
for i, char in enumerate(input_str):
action, value = KEY_TO_ACTION.get(char.upper()) # Convert to uppercase to handle case insensitivity
if action and action in ACTION_KEYS:
index = ACTION_KEYS.index(action)
action_tensor[i, index] = value # Set the corresponding action index to 1
return action_tensor
def load_image_as_tensor(image_path: str) -> torch.Tensor:
"""
Load an image and convert it to a 0-1 normalized tensor.
Args:
image_path (str): Path to the image file.
Returns:
torch.Tensor: Image tensor of shape (C, H, W), normalized to [0,1].
"""
if isinstance(image_path, str):
image = Image.open(image_path).convert("RGB") # Ensure it's RGB
else:
image = image_path
transform = transforms.Compose([
transforms.ToTensor(), # Converts to tensor and normalizes to [0,1]
])
return transform(image)
def run_local(cfg: DictConfig):
# delay some imports in case they are not needed in non-local envs for submission
from experiments import build_experiment
# Get yaml names
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
cfg_choice = OmegaConf.to_container(hydra_cfg.runtime.choices)
with open_dict(cfg):
if cfg_choice["experiment"] is not None:
cfg.experiment._name = cfg_choice["experiment"]
if cfg_choice["dataset"] is not None:
cfg.dataset._name = cfg_choice["dataset"]
if cfg_choice["algorithm"] is not None:
cfg.algorithm._name = cfg_choice["algorithm"]
# launch experiment
experiment = build_experiment(cfg, None, None)
return experiment.exec_interactive(cfg.experiment.tasks[0])
def enable_amp(model, precision="16-mixed"):
original_forward = model.forward
def amp_forward(*args, **kwargs):
with torch.autocast("cuda", dtype=torch.float16 if precision == "16-mixed" else torch.bfloat16):
return original_forward(*args, **kwargs)
model.forward = amp_forward
return model
memory_frames = []
memory_curr_frame = 0
input_history = ""
ICE_PLAINS_IMAGE = "assets/ice_plains.png"
DESERT_IMAGE = "assets/desert.png"
SAVANNA_IMAGE = "assets/savanna.png"
PLAINS_IMAGE = "assets/plans.png"
PLACE_IMAGE = "assets/place.png"
SUNFLOWERS_IMAGE = "assets/sunflower_plains.png"
SUNFLOWERS_RAIN_IMAGE = "assets/rain_sunflower_plains.png"
DEFAULT_IMAGE = ICE_PLAINS_IMAGE
device = torch.device('cuda')
def save_video(frames, path="output.mp4", fps=10):
h, w, _ = frames[0].shape
out = cv2.VideoWriter(path, cv2.VideoWriter_fourcc(*'XVID'), fps, (w, h))
for frame in frames:
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
out.release()
ffmpeg_cmd = [
"ffmpeg", "-y", "-i", path, "-c:v", "libx264", "-crf", "23", "-preset", "medium", path
]
subprocess.run(ffmpeg_cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return path
cfg = OmegaConf.load("configurations/huggingface.yaml")
worldmem = WorldMemMinecraft(cfg)
load_custom_checkpoint(algo=worldmem.diffusion_model, checkpoint_path=cfg.diffusion_path)
load_custom_checkpoint(algo=worldmem.vae, checkpoint_path=cfg.vae_path)
load_custom_checkpoint(algo=worldmem.pose_prediction_model, checkpoint_path=cfg.pose_predictor_path)
worldmem.to("cuda").eval()
worldmem = enable_amp(worldmem, precision="16-mixed")
actions = np.zeros((1, 25), dtype=np.float32)
poses = np.zeros((1, 5), dtype=np.float32)
memory_frames = load_image_as_tensor(DEFAULT_IMAGE)[None].numpy()
self_frames = None
self_actions = None
self_poses = None
self_memory_c2w = None
self_frame_idx = None
def get_duration_single_image_to_long_video(first_frame, action, first_pose, device, self_frames, self_actions,
self_poses, self_memory_c2w, self_frame_idx):
return 5 * len(action) if self_actions is not None else 5
@spaces.GPU(duration=get_duration_single_image_to_long_video)
def run_interactive(first_frame, action, first_pose, device, self_frames, self_actions,
self_poses, self_memory_c2w, self_frame_idx):
new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = worldmem.interactive(first_frame,
action,
first_pose,
device=device,
self_frames=self_frames,
self_actions=self_actions,
self_poses=self_poses,
self_memory_c2w=self_memory_c2w,
self_frame_idx=self_frame_idx)
return new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx
def set_denoising_steps(denoising_steps, sampling_timesteps_state):
worldmem.sampling_timesteps = denoising_steps
worldmem.diffusion_model.sampling_timesteps = denoising_steps
sampling_timesteps_state = denoising_steps
print("set denoising steps to", worldmem.sampling_timesteps)
return sampling_timesteps_state
def set_context_length(context_length, sampling_context_length_state):
worldmem.n_tokens = context_length
sampling_context_length_state = context_length
print("set context length to", worldmem.n_tokens)
return sampling_context_length_state
def set_memory_length(memory_length, sampling_memory_length_state):
worldmem.condition_similar_length = memory_length
sampling_memory_length_state = memory_length
print("set memory length to", worldmem.condition_similar_length)
return sampling_memory_length_state
def generate(keys):
# print("algo frame:", len(worldmem.frames))
input_actions = parse_input_to_tensor(keys)
global input_history
global memory_frames
global memory_curr_frame
global self_frames
global self_actions
global self_poses
global self_memory_c2w
global self_frame_idx
if self_frames is None:
new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = run_interactive(memory_frames[0],
actions[0],
poses[0],
device=device,
self_frames=self_frames,
self_actions=self_actions,
self_poses=self_poses,
self_memory_c2w=self_memory_c2w,
self_frame_idx=self_frame_idx)
new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = run_interactive(memory_frames[0],
input_actions,
None,
device=device,
self_frames=self_frames,
self_actions=self_actions,
self_poses=self_poses,
self_memory_c2w=self_memory_c2w,
self_frame_idx=self_frame_idx)
memory_frames = np.concatenate([memory_frames, new_frame[:,0]])
out_video = memory_frames.transpose(0,2,3,1)
out_video = np.clip(out_video, a_min=0.0, a_max=1.0)
out_video = (out_video * 255).astype(np.uint8)
temporal_video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
save_video(out_video, temporal_video_path)
input_history += keys
return out_video[-1], temporal_video_path, input_history
def reset():
global memory_curr_frame
global input_history
global memory_frames
global self_frames
global self_actions
global self_poses
global self_memory_c2w
global self_frame_idx
self_frames = None
self_poses = None
self_actions = None
self_memory_c2w = None
self_frame_idx = None
memory_frames = load_image_as_tensor(DEFAULT_IMAGE).numpy()[None]
input_history = ""
new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = run_interactive(memory_frames[0],
actions[0],
poses[0],
device=device,
self_frames=self_frames,
self_actions=self_actions,
self_poses=self_poses,
self_memory_c2w=self_memory_c2w,
self_frame_idx=self_frame_idx)
return input_history, DEFAULT_IMAGE
def on_image_click(SELECTED_IMAGE):
global DEFAULT_IMAGE
DEFAULT_IMAGE = SELECTED_IMAGE
reset()
return SELECTED_IMAGE
css = """
h1 {
text-align: center;
display:block;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# WORLDMEM: Long-term Consistent World Generation with Memory
"""
)
# <div style="text-align: center;">
# <!-- Public Website -->
# <a style="display:inline-block" href="https://nirvanalan.github.io/projects/GA/">
# <img src="https://img.shields.io/badge/public_website-8A2BE2">
# </a>
# <!-- GitHub Stars -->
# <a style="display:inline-block; margin-left: .5em" href="https://github.com/NIRVANALAN/GaussianAnything">
# <img src="https://img.shields.io/github/stars/NIRVANALAN/GaussianAnything?style=social">
# </a>
# <!-- Project Page -->
# <a style="display:inline-block; margin-left: .5em" href="https://nirvanalan.github.io/projects/GA/">
# <img src="https://img.shields.io/badge/project_page-blue">
# </a>
# <!-- arXiv Paper -->
# <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/XXXX.XXXXX">
# <img src="https://img.shields.io/badge/arXiv-paper-red">
# </a>
# </div>
example_actions = ["AAAAAAAAAAAADDDDDDDDDDDD", "AAAAAAAAAAAAAAAAAAAAAAAA", "DDDDDDDDEEEEEEEEEESSSAAAAAAAAWWW", "DDDDDDDDDDDDQQQQQQQQQQQQQQQDDDDDDDDDDDD",
"DDDDWWWDDDDDDDDDDDDDDDDDDDDSSS", "SSUNNWWEEEEEEEEEAAASSUNNWWEEEEEEEEE"]
with gr.Row(variant="panel"):
video_display = gr.Video(autoplay=True, loop=True)
image_display = gr.Image(value=DEFAULT_IMAGE, interactive=False, label="Last Frame")
with gr.Row(variant="panel"):
with gr.Column(scale=2):
input_box = gr.Textbox(label="Action Sequence", placeholder="Enter action sequence here...", lines=1, max_lines=1)
log_output = gr.Textbox(label="History Log", interactive=False)
gr.Markdown("### Action sequence examples.")
with gr.Row():
buttons = []
for action in example_actions[:2]:
with gr.Column(scale=len(action)):
buttons.append(gr.Button(action))
with gr.Row():
for action in example_actions[2:4]:
with gr.Column(scale=len(action)):
buttons.append(gr.Button(action))
with gr.Row():
for action in example_actions[4:6]:
with gr.Column(scale=len(action)):
buttons.append(gr.Button(action))
with gr.Column(scale=1):
slider_denoising_step = gr.Slider(minimum=10, maximum=50, value=worldmem.sampling_timesteps, step=1, label="Denoising Steps")
slider_context_length = gr.Slider(minimum=2, maximum=10, value=worldmem.n_tokens, step=1, label="Context Length")
slider_memory_length = gr.Slider(minimum=4, maximum=16, value=worldmem.condition_similar_length, step=1, label="Memory Length")
submit_button = gr.Button("Generate")
reset_btn = gr.Button("Reset")
sampling_timesteps_state = gr.State(worldmem.sampling_timesteps)
sampling_context_length_state = gr.State(worldmem.n_tokens)
sampling_memory_length_state = gr.State(worldmem.condition_similar_length)
def set_action(action):
return action
# gr.Markdown("### Action sequence examples.")
for button, action in zip(buttons, example_actions):
button.click(set_action, inputs=[gr.State(value=action)], outputs=input_box)
gr.Markdown("### Click on the images below to reset the sequence and generate from the new image.")
with gr.Row():
image_display_1 = gr.Image(value=SUNFLOWERS_IMAGE, interactive=False, label="Sunflower Plains")
image_display_2 = gr.Image(value=DESERT_IMAGE, interactive=False, label="Desert")
image_display_3 = gr.Image(value=SAVANNA_IMAGE, interactive=False, label="Savanna")
image_display_4 = gr.Image(value=ICE_PLAINS_IMAGE, interactive=False, label="Ice Plains")
image_display_5 = gr.Image(value=SUNFLOWERS_RAIN_IMAGE, interactive=False, label="Rainy Sunflower Plains")
image_display_6 = gr.Image(value=PLACE_IMAGE, interactive=False, label="Place")
gr.Markdown(
"""
## Instructions & Notes:
1. Enter an action sequence in the **"Action Sequence"** text box and click **"Generate"** to begin.
2. You can continue generation by clicking **"Generation"** again and again. Previous sequences are logged in the history panel.
3. Click **"Reset"** to clear the current sequence and start fresh.
4. Action sequences can be composed using the following keys:
- W: turn up
- S: turn down
- A: turn left
- D: turn right
- Q: move forward
- E: move backward
- N: no-op (do nothing)
- U: use item
5. Higher denoising steps produce more detailed results but take longer. 20 steps is a good balance between quality and speed. The same applies to context and memory length.
6. For faster performance, we recommend running the demo locally (~1s/frame on H100 vs ~5s on Spaces).
7. If you find this project interesting or useful, please consider giving it a ⭐️ on [GitHub]()!
8. For feedback or suggestions, feel free to open a GitHub issue or contact me directly at **[email protected]**.
"""
)
# input_box.submit(update_image_and_log, inputs=[input_box], outputs=[image_display, video_display, log_output])
submit_button.click(generate, inputs=[input_box], outputs=[image_display, video_display, log_output])
reset_btn.click(reset, outputs=[log_output, image_display])
image_display_1.select(lambda: on_image_click(SUNFLOWERS_IMAGE), outputs=image_display)
image_display_2.select(lambda: on_image_click(DESERT_IMAGE), outputs=image_display)
image_display_3.select(lambda: on_image_click(SAVANNA_IMAGE), outputs=image_display)
image_display_4.select(lambda: on_image_click(ICE_PLAINS_IMAGE), outputs=image_display)
image_display_5.select(lambda: on_image_click(SUNFLOWERS_RAIN_IMAGE), outputs=image_display)
image_display_6.select(lambda: on_image_click(PLACE_IMAGE), outputs=image_display)
slider_denoising_step.change(fn=set_denoising_steps, inputs=[slider_denoising_step, sampling_timesteps_state], outputs=sampling_timesteps_state)
slider_context_length.change(fn=set_context_length, inputs=[slider_context_length, sampling_context_length_state], outputs=sampling_context_length_state)
slider_memory_length.change(fn=set_memory_length, inputs=[slider_memory_length, sampling_memory_length_state], outputs=sampling_memory_length_state)
demo.launch()