Spaces:
Runtime error
Runtime error
File size: 12,533 Bytes
c54f817 8435838 c575e18 89b9813 8435838 89b9813 e62ac65 e8de28c a677593 5a39c97 a2d3df0 b916cdf 0e5f195 b916cdf 8435838 5754a1c 70e8745 5754a1c d999192 5754a1c dc01bcc 5754a1c db037f3 5754a1c 8435838 c575e18 89b9813 db037f3 89b9813 f1099a0 89b9813 5587923 a9930a8 89b9813 c7a7c4e 89b9813 eccb2f0 5587923 d358f29 edf9c56 89b9813 db037f3 a9930a8 e5c7a80 89b9813 e5c7a80 5f4dfaa c7a7c4e 89b9813 a677593 0b874ec 3dc3e19 0b874ec e8de28c 3208a74 fff6c83 3208a74 5a39c97 f1ee247 89b9813 a677593 3208a74 a677593 3208a74 bfa85db 3208a74 33a9da7 bfa85db a677593 704eccb f9c716f a3217ba f1ee247 f9c716f 48180e7 f9c716f 9df27df 2e08e3b 3a00f55 5754a1c 2e08e3b 704eccb f9c716f 48180e7 a076741 f1ee247 5754a1c 3a00f55 704eccb 2e08e3b e137c08 5754a1c db037f3 5754a1c 53ee11a 1415561 f9c716f a677593 5754a1c a677593 599777e 8bb7641 9c3c2d7 89b9813 db037f3 89b9813 9df27df c575e18 8435838 1679b8f 8435838 f0231ae 1415561 ae12499 bc57790 e8716e2 23e2ef6 0c3dd1c 8435838 e62ac65 8a73e0c 1679b8f e62ac65 4a67929 53ee11a a076741 f1ee247 4a67929 6e076cc e62ac65 a2d3df0 e62ac65 9df27df c144d28 6e076cc 8072aa5 e62ac65 a2d3df0 e62ac65 8435838 e62ac65 2548f77 8435838 e62ac65 2548f77 c575e18 8435838 1679b8f e62ac65 1679b8f 2548f77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from typing import List, Tuple
import numpy as np
from PIL import Image, ImageDraw
import base64
import io
import asyncio
from utils import initialize_model, sample_frame
import torch
import os
import time
DEBUG = True
app = FastAPI()
# Mount the static directory to serve HTML, JavaScript, and CSS files
app.mount("/static", StaticFiles(directory="static"), name="static")
def parse_action_string(action_str):
"""Convert formatted action string to x, y coordinates
Args:
action_str: String like 'N N N N N : N N N N N' or '+ 0 2 1 3 : + 0 3 8 3'
Returns:
tuple: (x, y) coordinates or None if action is padding
"""
if 'N' in action_str:
return (None, None)
# Split into x and y parts
action_str = action_str.replace(' ', '')
x_part, y_part = action_str.split(':')
# Parse x: remove sign, join digits, convert to int, apply sign
x = int(x_part)
# Parse y: remove sign, join digits, convert to int, apply sign
y = int(y_part)
return (x, y)
def create_position_map(pos, image_size=64, original_width=1024, original_height=640):
"""Convert cursor position to a binary position map
Args:
x, y: Original cursor positions
image_size: Size of the output position map (square)
original_width: Original screen width (1024)
original_height: Original screen height (640)
Returns:
torch.Tensor: Binary position map of shape (1, image_size, image_size)
"""
x, y = pos
#x, y = 307, 375
if x is None:
return torch.zeros((1, image_size, image_size))
# Scale the positions to new size
x_scaled = int((x / original_width) * image_size)
y_scaled = int((y / original_height) * image_size)
# Clamp values to ensure they're within bounds
x_scaled = max(0, min(x_scaled, image_size - 1))
y_scaled = max(0, min(y_scaled, image_size - 1))
# Create binary position map
pos_map = torch.zeros((1, image_size, image_size))
pos_map[0, y_scaled, x_scaled] = 1.0
return pos_map, x_scaled, y_scaled
# Serve the index.html file at the root URL
@app.get("/")
async def get():
return HTMLResponse(open("static/index.html").read())
def generate_random_image(width: int, height: int) -> np.ndarray:
return np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
def draw_trace(image: np.ndarray, previous_actions: List[Tuple[str, List[int]]], x_scaled=-1, y_scaled=-1) -> np.ndarray:
pil_image = Image.fromarray(image)
#pil_image = Image.open('image_3.png')
draw = ImageDraw.Draw(pil_image)
flag = True
prev_x, prev_y = None, None
for i, (action_type, position) in enumerate(previous_actions):
color = (255, 0, 0) if action_type == "move" else (0, 255, 0)
x, y = position
if x == 0 and y == 0 and flag:
continue
else:
flag = False
#if DEBUG:
# x = x * 256 / 1024
# y = y * 256 / 640
#draw.ellipse([x-2, y-2, x+2, y+2], fill=color)
if prev_x is not None:
#prev_x, prev_y = previous_actions[i-1][1]
draw.line([prev_x, prev_y, x, y], fill=color, width=1)
prev_x, prev_y = x, y
draw.ellipse([x_scaled*4-2, y_scaled*4-2, x_scaled*4+2, y_scaled*4+2], fill=(0, 255, 0))
#pil_image = pil_image.convert("RGB")
return np.array(pil_image)
# Initialize the model at the start of your application
#model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
model = initialize_model("2e5_debug_gpt_firstframe_posmap_longtrainh200.yaml", "yuntian-deng/computer-model")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
def load_initial_images(width, height):
initial_images = []
for i in range(7):
initial_images.append(np.zeros((height, width, 3), dtype=np.uint8))
#image_path = f"image_{i}.png"
#if os.path.exists(image_path):
# img = Image.open(image_path).resize((width, height))
# initial_images.append(np.array(img))
#else:
# print(f"Warning: {image_path} not found. Using blank image instead.")
# initial_images.append(np.zeros((height, width, 3), dtype=np.uint8))
return initial_images
def normalize_images(images, target_range=(-1, 1)):
images = np.stack(images).astype(np.float32)
if target_range == (-1, 1):
return images / 127.5 - 1
elif target_range == (0, 1):
return images / 255.0
else:
raise ValueError(f"Unsupported target range: {target_range}")
def denormalize_image(image, source_range=(-1, 1)):
if source_range == (-1, 1):
return ((image + 1) * 127.5).clip(0, 255).astype(np.uint8)
elif source_range == (0, 1):
return (image * 255).clip(0, 255).astype(np.uint8)
else:
raise ValueError(f"Unsupported source range: {source_range}")
def format_action(action_str, is_padding=False):
if is_padding:
return "N N N N N : N N N N N"
# Split the x~y coordinates
x, y = map(int, action_str.split('~'))
# Convert numbers to padded strings and add spaces between digits
x_str = f"{abs(x):04d}"
y_str = f"{abs(y):04d}"
x_spaced = ' '.join(x_str)
y_spaced = ' '.join(y_str)
# Format with sign and proper spacing
return f"{'+ ' if x >= 0 else '- '}{x_spaced} : {'+ ' if y >= 0 else '- '}{y_spaced}"
def predict_next_frame(previous_frames: List[np.ndarray], previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray:
width, height = 256, 256
initial_images = load_initial_images(width, height)
# Prepare the image sequence for the model
image_sequence = previous_frames[-7:] # Take the last 7 frames
while len(image_sequence) < 7:
image_sequence.insert(0, initial_images[len(image_sequence)])
# Convert the image sequence to a tensor and concatenate in the channel dimension
image_sequence_tensor = torch.from_numpy(normalize_images(image_sequence, target_range=(-1, 1)))
image_sequence_tensor = image_sequence_tensor.to(device)
# Prepare the prompt based on the previous actions
action_descriptions = []
initial_actions = ['901:604', '901:604', '901:604', '901:604', '901:604', '901:604', '901:604', '921:604']
initial_actions = ['0:0'] * 7
#initial_actions = ['N N N N N : N N N N N'] * 7
def unnorm_coords(x, y):
return int(x), int(y) #int(x - (1920 - 256) / 2), int(y - (1080 - 256) / 2)
# Process initial actions if there are not enough previous actions
while len(previous_actions) < 8:
x, y = map(int, initial_actions.pop(0).split(':'))
previous_actions.insert(0, ("move", unnorm_coords(x, y)))
prev_x = 0
prev_y = 0
for action_type, pos in previous_actions: #[-8:]:
if action_type == "move":
x, y = pos
norm_x = int(round(x / 256 * 1024)) #x + (1920 - 256) / 2
norm_y = int(round(y / 256 * 640)) #y + (1080 - 256) / 2
#if DEBUG:
# norm_x = x
# norm_y = y
#action_descriptions.append(f"{(norm_x-prev_x):.0f}~{(norm_y-prev_y):.0f}")
#action_descriptions.append(format_action(f'{norm_x-prev_x:.0f}~{norm_y-prev_y:.0f}', x==0 and y==0))
action_descriptions.append(format_action(f'{norm_x:.0f}~{norm_y:.0f}', x==0 and y==0))
prev_x = norm_x
prev_y = norm_y
elif action_type == "left_click":
action_descriptions.append("left_click")
elif action_type == "right_click":
action_descriptions.append("right_click")
prompt = " ".join(action_descriptions[-8:])
#prompt = "N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N + 0 3 0 7 : + 0 3 7 5"
pos_map, x_scaled, y_scaled = create_position_map(parse_action_string(action_descriptions[-1]))
#prompt = ''
#prompt = "1~1 0~0 0~0 0~0 0~0 0~0 0~0 0~0"
print(prompt)
# Generate the next frame
new_frame = sample_frame(model, prompt, image_sequence_tensor, pos_map=pos_map)
# Convert the generated frame to the correct format
new_frame = new_frame.transpose(1, 2, 0)
print (new_frame.max(), new_frame.min())
new_frame_denormalized = denormalize_image(new_frame, source_range=(-1, 1))
# Draw the trace of previous actions
new_frame_with_trace = draw_trace(new_frame_denormalized, previous_actions, x_scaled, y_scaled)
return new_frame_with_trace, new_frame_denormalized
# WebSocket endpoint for continuous user interaction
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
client_id = id(websocket) # Use a unique identifier for each connection
print(f"New WebSocket connection: {client_id}")
await websocket.accept()
previous_frames = []
previous_actions = []
positions = ['815~335', '787~342', '787~342', '749~345', '703~346', '703~346', '654~347', '654~347', '604~349', '555~353', '555~353', '509~357', '509~357', '468~362', '431~368', '431~368']
#positions = ['815~335', '787~342', '749~345', '703~346', '703~346', '654~347', '654~347', '604~349', '555~353', '555~353', '509~357', '509~357', '468~362', '431~368', '431~368']
positions = ['307~375']
positions = ['815~335']
#positions = ['787~342']
positions = ['300~800']
#positions = positions[:4]
try:
while True:
try:
# Receive user input with a timeout
#data = await asyncio.wait_for(websocket.receive_json(), timeout=90000.0)
data = await websocket.receive_json()
if data.get("type") == "heartbeat":
await websocket.send_json({"type": "heartbeat_response"})
continue
action_type = data.get("action_type")
mouse_position = data.get("mouse_position")
# Store the actions
if DEBUG:
position = positions[0]
#positions = positions[1:]
#mouse_position = position.split('~')
#mouse_position = [int(item) for item in mouse_position]
#mouse_position = '+ 0 8 1 5 : + 0 3 3 5'
previous_actions.append((action_type, mouse_position))
#previous_actions = [(action_type, mouse_position)]
# Log the start time
start_time = time.time()
# Predict the next frame based on the previous frames and actions
next_frame, next_frame_append = predict_next_frame(previous_frames, previous_actions)
# Load and append the corresponding ground truth image instead of model output
#img = Image.open(f"image_{len(previous_frames)%7}.png")
previous_frames.append(next_frame_append)
# Convert the numpy array to a base64 encoded image
img = Image.fromarray(next_frame)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Log the processing time
processing_time = time.time() - start_time
print(f"Frame processing time: {processing_time:.2f} seconds")
# Send the generated frame back to the client
await websocket.send_json({"image": img_str})
except asyncio.TimeoutError:
print("WebSocket connection timed out")
#break # Exit the loop on timeout
except WebSocketDisconnect:
print("WebSocket disconnected")
#break # Exit the loop on disconnect
except Exception as e:
print(f"Error in WebSocket connection {client_id}: {e}")
finally:
print(f"WebSocket connection closed: {client_id}")
#await websocket.close() # Ensure the WebSocket is closed
|