Spaces:
Runtime error
Runtime error
File size: 8,525 Bytes
c54f817 8435838 c575e18 89b9813 8435838 89b9813 e62ac65 e8de28c a677593 5a39c97 a2d3df0 b916cdf 4a67929 b916cdf 8435838 c575e18 89b9813 062cbf4 f9c800e 89b9813 e5c7a80 89b9813 e5c7a80 89b9813 a677593 c7afaf1 e8de28c 3208a74 fff6c83 3208a74 5a39c97 89b9813 a677593 3208a74 a677593 3208a74 bfa85db 3208a74 33a9da7 bfa85db a677593 704eccb f9c716f a3217ba f9c716f 48180e7 f9c716f 9df27df 2e08e3b 3a00f55 2e08e3b 704eccb f9c716f 48180e7 4a67929 3a00f55 704eccb 2e08e3b f9c716f a677593 599777e 8bb7641 9c3c2d7 89b9813 5a39c97 89b9813 9df27df c575e18 8435838 1679b8f 8435838 b80d610 f0231ae 8435838 e62ac65 395803c 1679b8f e62ac65 4a67929 e62ac65 a2d3df0 e62ac65 9df27df e62ac65 a2d3df0 e62ac65 8435838 e62ac65 8435838 e62ac65 c575e18 8435838 1679b8f e62ac65 1679b8f a37042d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from typing import List, Tuple
import numpy as np
from PIL import Image, ImageDraw
import base64
import io
import asyncio
from utils import initialize_model, sample_frame
import torch
import os
import time
DEBUG = True
app = FastAPI()
# Mount the static directory to serve HTML, JavaScript, and CSS files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Serve the index.html file at the root URL
@app.get("/")
async def get():
return HTMLResponse(open("static/index.html").read())
def generate_random_image(width: int, height: int) -> np.ndarray:
return np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
def draw_trace(image: np.ndarray, previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray:
pil_image = Image.fromarray(image)
draw = ImageDraw.Draw(pil_image)
for i, (action_type, position) in enumerate(previous_actions):
color = (255, 0, 0) if action_type == "move" else (0, 255, 0)
x, y = position
if DEBUG:
x = x * 256 / 1024
y = y * 256 / 1024
draw.ellipse([x-2, y-2, x+2, y+2], fill=color)
if i > 0:
#prev_x, prev_y = previous_actions[i-1][1]
draw.line([prev_x, prev_y, x, y], fill=color, width=1)
prev_x, prev_y = x, y
return np.array(pil_image)
# Initialize the model at the start of your application
model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
def load_initial_images(width, height):
initial_images = []
for i in range(7):
initial_images.append(np.zeros((height, width, 3), dtype=np.uint8))
#image_path = f"image_{i}.png"
#if os.path.exists(image_path):
# img = Image.open(image_path).resize((width, height))
# initial_images.append(np.array(img))
#else:
# print(f"Warning: {image_path} not found. Using blank image instead.")
# initial_images.append(np.zeros((height, width, 3), dtype=np.uint8))
return initial_images
def normalize_images(images, target_range=(-1, 1)):
images = np.stack(images).astype(np.float32)
if target_range == (-1, 1):
return images / 127.5 - 1
elif target_range == (0, 1):
return images / 255.0
else:
raise ValueError(f"Unsupported target range: {target_range}")
def denormalize_image(image, source_range=(-1, 1)):
if source_range == (-1, 1):
return ((image + 1) * 127.5).clip(0, 255).astype(np.uint8)
elif source_range == (0, 1):
return (image * 255).clip(0, 255).astype(np.uint8)
else:
raise ValueError(f"Unsupported source range: {source_range}")
def predict_next_frame(previous_frames: List[np.ndarray], previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray:
width, height = 256, 256
initial_images = load_initial_images(width, height)
# Prepare the image sequence for the model
image_sequence = previous_frames[-7:] # Take the last 7 frames
while len(image_sequence) < 7:
image_sequence.insert(0, initial_images[len(image_sequence)])
# Convert the image sequence to a tensor and concatenate in the channel dimension
image_sequence_tensor = torch.from_numpy(normalize_images(image_sequence, target_range=(-1, 1)))
image_sequence_tensor = image_sequence_tensor.to(device)
# Prepare the prompt based on the previous actions
action_descriptions = []
initial_actions = ['901:604', '901:604', '901:604', '901:604', '901:604', '901:604', '901:604', '921:604']
initial_actions = ['0:0'] * 7
def unnorm_coords(x, y):
return int(x), int(y) #int(x - (1920 - 256) / 2), int(y - (1080 - 256) / 2)
# Process initial actions if there are not enough previous actions
while len(previous_actions) < 8:
x, y = map(int, initial_actions.pop(0).split(':'))
previous_actions.insert(0, ("move", unnorm_coords(x, y)))
prev_x = 0
prev_y = 0
for action_type, pos in previous_actions: #[-8:]:
if action_type == "move":
x, y = pos
norm_x = int(round(x / 256 * 1024)) #x + (1920 - 256) / 2
norm_y = int(round(y / 256 * 640)) #y + (1080 - 256) / 2
if DEBUG:
norm_x = x
norm_y = y
action_descriptions.append(f"{(norm_x-prev_x):.0f}~{(norm_y-prev_y):.0f}")
prev_x = norm_x
prev_y = norm_y
elif action_type == "left_click":
action_descriptions.append("left_click")
elif action_type == "right_click":
action_descriptions.append("right_click")
prompt = " ".join(action_descriptions[-8:])
print(prompt)
# Generate the next frame
new_frame = sample_frame(model, prompt, image_sequence_tensor)
# Convert the generated frame to the correct format
new_frame = new_frame.transpose(1, 2, 0)
print (new_frame.max(), new_frame.min())
new_frame_denormalized = denormalize_image(new_frame, source_range=(-1, 1))
# Draw the trace of previous actions
new_frame_with_trace = draw_trace(new_frame_denormalized, previous_actions)
return new_frame_with_trace, new_frame_denormalized
# WebSocket endpoint for continuous user interaction
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
client_id = id(websocket) # Use a unique identifier for each connection
print(f"New WebSocket connection: {client_id}")
await websocket.accept()
previous_frames = []
previous_actions = []
positions = ['496~61', '815~335', '815~335', '815~335', '787~342', '749~345', '749~345', '703~346', '703~346', '654~347', '604~349', '604~349', '555~353', '509~357', '509~357']
positions = ['815~335', '787~342', '787~342', '749~345', '703~346', '703~346', '654~347', '654~347', '604~349', '555~353', '555~353', '509~357', '509~357', '468~362', '431~368', '431~368']
try:
while True:
try:
# Receive user input with a timeout
data = await asyncio.wait_for(websocket.receive_json(), timeout=90.0)
if data.get("type") == "heartbeat":
await websocket.send_json({"type": "heartbeat_response"})
continue
action_type = data.get("action_type")
mouse_position = data.get("mouse_position")
# Store the actions
if DEBUG:
position = positions[0]
positions = positions[1:]
mouse_position = position.split('~')
mouse_position = [int(item) for item in mouse_position]
previous_actions.append((action_type, mouse_position))
# Log the start time
start_time = time.time()
# Predict the next frame based on the previous frames and actions
next_frame, next_frame_append = predict_next_frame(previous_frames, previous_actions)
previous_frames.append(next_frame_append)
# Convert the numpy array to a base64 encoded image
img = Image.fromarray(next_frame)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Log the processing time
processing_time = time.time() - start_time
print(f"Frame processing time: {processing_time:.2f} seconds")
# Send the generated frame back to the client
await websocket.send_json({"image": img_str})
except asyncio.TimeoutError:
print("WebSocket connection timed out")
break
except WebSocketDisconnect:
print("WebSocket disconnected")
break
except Exception as e:
print(f"Error in WebSocket connection {client_id}: {e}")
finally:
print(f"WebSocket connection closed: {client_id}")
# Remove the explicit websocket.close() call here
|