File size: 22,374 Bytes
c54f817
8435838
c575e18
89b9813
8435838
89b9813
 
 
e62ac65
e8de28c
a677593
5a39c97
a2d3df0
b916cdf
4994a33
09eba18
b916cdf
 
8435838
 
 
fc0af52
 
5754a1c
 
 
 
 
 
 
 
a9d9852
 
5754a1c
a9d9852
5754a1c
 
 
 
 
 
 
 
 
 
 
 
a9d9852
5754a1c
929432c
5754a1c
 
 
 
 
 
 
 
 
 
 
929432c
5754a1c
a9d9852
 
929432c
 
a9d9852
929432c
 
 
 
5754a1c
 
984922b
 
5754a1c
 
984922b
dc01bcc
a9d9852
984922b
a9d9852
fc0af52
516fc1c
 
b403864
a9d9852
5754a1c
a9d9852
5754a1c
8435838
 
 
 
c575e18
89b9813
 
 
db037f3
89b9813
 
fc0af52
 
 
 
 
 
 
 
 
a9930a8
89b9813
 
fc0af52
5587923
fc0af52
 
 
89b9813
fc0af52
 
db037f3
fc0af52
 
 
 
 
 
 
 
 
c815936
 
 
fd3598c
fc0af52
f660fd9
 
89b9813
 
 
a677593
0b874ec
8a16fb0
0b874ec
e8de28c
 
3208a74
 
 
50eea75
 
eac6a5b
c94bfc7
50eea75
 
505d2c9
50eea75
 
3208a74
 
 
 
 
 
 
 
 
 
 
5a39c97
 
 
 
 
 
 
f1ee247
50eea75
f1ee247
a9d9852
f1ee247
 
 
a9d9852
50eea75
 
f1ee247
 
 
 
 
 
 
a9d9852
f1ee247
89b9813
08c04fc
3208a74
 
a677593
 
 
3208a74
 
bfa85db
3208a74
33a9da7
bfa85db
a677593
704eccb
a9d9852
a3217ba
f1ee247
f9c716f
48180e7
f9c716f
 
9df27df
2e08e3b
09a0506
3a00f55
 
a9363f4
5754a1c
313bb52
5754a1c
2e08e3b
21ceee1
f4a1565
 
e17298c
 
09a0506
f9c716f
a9d9852
 
e712a69
 
 
 
7ef36c6
fd35ae8
 
f1ee247
5754a1c
 
3a00f55
 
09a0506
50eea75
 
 
e712a69
 
 
 
7ef36c6
d0185ca
 
50eea75
 
 
 
 
 
704eccb
09a0506
704eccb
09a0506
 
704eccb
2e08e3b
a9d9852
e137c08
b07d75e
 
 
 
 
fe4f4a4
b07d75e
 
 
 
 
 
 
fc0af52
 
5754a1c
53ee11a
1415561
f9c716f
b403864
 
a677593
 
b07d75e
a677593
 
599777e
8bb7641
9c3c2d7
89b9813
 
db037f3
89b9813
fc0af52
 
 
 
9df27df
c575e18
8435838
 
 
fc0af52
 
 
1679b8f
 
8435838
 
 
f0231ae
1415561
ae12499
bc57790
e8716e2
23e2ef6
313bb52
 
 
 
 
 
 
 
 
 
 
 
 
 
98a4a00
 
 
 
 
 
 
 
 
 
1e27bfe
 
 
 
 
 
 
 
 
 
5845822
 
 
 
 
eac6a5b
 
5845822
313bb52
 
69f42de
313bb52
 
 
 
 
 
 
 
98a4a00
 
 
 
 
 
 
 
 
 
 
 
c94bfc7
 
 
 
 
 
 
 
 
 
eac6a5b
0c3dd1c
1e63be3
 
 
 
 
 
09eba18
 
416b9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8435838
 
e62ac65
 
8a73e0c
 
 
1679b8f
 
 
 
 
e62ac65
 
fd3598c
a1aa2aa
21ceee1
fd3598c
 
a1aa2aa
e62ac65
 
4a67929
 
53ee11a
a076741
 
f1ee247
054642a
313bb52
 
 
 
d249772
98a4a00
5845822
09eba18
69f42de
 
09eba18
a2d3df0
 
 
e62ac65
ec4fd5b
eac6a5b
e750aef
9df27df
c144d28
0a01c1a
5845822
eac6a5b
ec4fd5b
69f42de
 
ec4fd5b
d249772
e62ac65
 
 
 
 
 
 
a2d3df0
 
 
 
e62ac65
 
8435838
e62ac65
 
2548f77
8435838
e62ac65
 
2548f77
c575e18
8435838
1679b8f
e62ac65
 
1679b8f
2548f77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from typing import List, Tuple
import numpy as np
from PIL import Image, ImageDraw
import base64
import io
import asyncio
from utils import initialize_model, sample_frame
import torch
import os
import time

DEBUG = False
DEBUG_TEACHER_FORCING = False
app = FastAPI()

# Mount the static directory to serve HTML, JavaScript, and CSS files
app.mount("/static", StaticFiles(directory="static"), name="static")

# Add this at the top with other global variables
all_click_positions = []  # Store all historical click positions

def parse_action_string(action_str):
    """Convert formatted action string to x, y coordinates
    Args:
        action_str: String like 'N N N N N : N N N N N' or '+ 0 2 1 3 : + 0 3 8 3'
    Returns:
        tuple: (x, y) coordinates or None if action is padding
    """
    action_type = action_str[0]
    action_str = action_str[1:].strip()
    if 'N' in action_str:
        return (None, None, None)
        
    # Split into x and y parts
    action_str = action_str.replace(' ', '')
    x_part, y_part = action_str.split(':')
    
    # Parse x: remove sign, join digits, convert to int, apply sign
    
    x = int(x_part)
    
    # Parse y: remove sign, join digits, convert to int, apply sign
    y = int(y_part)
    
    return x, y, action_type

def create_position_and_click_map(pos,action_type, image_height=48, image_width=64, original_width=512, original_height=384):
    """Convert cursor position to a binary position map
    Args:
        x, y: Original cursor positions
        image_size: Size of the output position map (square)
        original_width: Original screen width (1024)
        original_height: Original screen height (640)
    Returns:
        torch.Tensor: Binary position map of shape (1, image_size, image_size)
    """
    x, y = pos
    if x is None:
        return torch.zeros((1, image_height, image_width)), torch.zeros((1, image_height, image_width)), None, None
    # Scale the positions to new size
    #x_scaled = int((x / original_width) * image_size)
    #y_scaled = int((y / original_height) * image_size)
    #screen_width, screen_height = 512, 384
    #video_width, video_height = 512, 384
        
    #x_scaled = x - (screen_width / 2 - video_width / 2)
    #y_scaled = y - (screen_height / 2 - video_height / 2)
    x_scaled = int(x / original_width * image_width)
    y_scaled = int(y / original_height * image_height)
    
    # Clamp values to ensure they're within bounds
    x_scaled = max(0, min(x_scaled, image_width - 1))
    y_scaled = max(0, min(y_scaled, image_height - 1))
    
    # Create binary position map
    pos_map = torch.zeros((1, image_height, image_width))
    pos_map[0, y_scaled, x_scaled] = 1.0

    leftclick_map = torch.zeros((1, image_height, image_width))
    if action_type == 'L':
        print ('left click', x_scaled, y_scaled)
        #print ('skipped')
        if True:
            leftclick_map[0, y_scaled, x_scaled] = 1.0
    
    
    return pos_map, leftclick_map, x_scaled, y_scaled
    
# Serve the index.html file at the root URL
@app.get("/")
async def get():
    return HTMLResponse(open("static/index.html").read())

def generate_random_image(width: int, height: int) -> np.ndarray:
    return np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)

def draw_trace(image: np.ndarray, previous_actions: List[Tuple[str, List[int]]], x_scaled=-1, y_scaled=-1) -> np.ndarray:
    pil_image = Image.fromarray(image)
    draw = ImageDraw.Draw(pil_image)
    
    # Draw all historical click positions
    for click_x, click_y in all_click_positions:
        x_draw = click_x   # Scale factor for display
        y_draw = click_y 
        # Draw historical clicks as red circles
        draw.ellipse([x_draw-4, y_draw-4, x_draw+4, y_draw+4], fill=(255, 0, 0))
    
    # Draw current trace
    prev_x, prev_y = None, None
    for i, (action_type, position) in enumerate(previous_actions):
        x, y = position
        if x == 0 and y == 0:
            continue
            
        x_draw = x
        y_draw = y
        
        # Draw movement positions as blue dots
        draw.ellipse([x_draw-2, y_draw-2, x_draw+2, y_draw+2], fill=(0, 0, 255))
        
        # Draw connecting lines
        if prev_x is not None:
            draw.line([prev_x, prev_y, x_draw, y_draw], fill=(0, 255, 0), width=1)
        prev_x, prev_y = x_draw, y_draw
    
    # Draw current position
    if x_scaled >= 0 and y_scaled >= 0:
        x_current = x_scaled * 8
        y_current = y_scaled * 8
        if not DEBUG_TEACHER_FORCING:
            x_current = x_current *8
            y_current = y_current *8
        print ('x_current, y_current', x_current, y_current)
        draw.ellipse([x_current-3, y_current-3, x_current+3, y_current+3], fill=(0, 255, 0))
    else:
        assert False
    
    return np.array(pil_image)

# Initialize the model at the start of your application
#model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
model = initialize_model("pssearch_bsz64_acc1_lr8e5_512_leftclick_histpos_512_384.yaml", "yuntian-deng/computer-model")

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)

def load_initial_images(width, height):
    initial_images = []
    if DEBUG_TEACHER_FORCING:
        # Load the previous 7 frames for image_81
        for i in range(117-7, 117):  # Load images 74-80
            img = Image.open(f"record_10003/image_{i}.png")#.resize((width, height))
            initial_images.append(np.array(img))
    else:
        #assert False
        for i in range(7):
            initial_images.append(np.zeros((height, width, 3), dtype=np.uint8))
    return initial_images

def normalize_images(images, target_range=(-1, 1)):
    images = np.stack(images).astype(np.float32)
    if target_range == (-1, 1):
        return images / 127.5 - 1
    elif target_range == (0, 1):
        return images / 255.0
    else:
        raise ValueError(f"Unsupported target range: {target_range}")

def denormalize_image(image, source_range=(-1, 1)):
    if source_range == (-1, 1):
        return ((image + 1) * 127.5).clip(0, 255).astype(np.uint8)
    elif source_range == (0, 1):
        return (image * 255).clip(0, 255).astype(np.uint8)
    else:
        raise ValueError(f"Unsupported source range: {source_range}")
        
def format_action(action_str, is_padding=False, is_leftclick=False):
    if is_padding:
        return "N N N N N N : N N N N N"
    
    # Split the x~y coordinates
    x, y = map(int, action_str.split('~'))
    prefix = 'N'
    if is_leftclick:
        prefix = 'L'
    # Convert numbers to padded strings and add spaces between digits
    x_str = f"{abs(x):04d}"
    y_str = f"{abs(y):04d}"
    x_spaced = ' '.join(x_str)
    y_spaced = ' '.join(y_str)
    
    # Format with sign and proper spacing
    return prefix + " " + f"{'+ ' if x >= 0 else '- '}{x_spaced} : {'+ ' if y >= 0 else '- '}{y_spaced}"
    
def predict_next_frame(previous_frames: List[np.ndarray], previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray:
    width, height = 512, 384
    initial_images = load_initial_images(width, height)

    # Prepare the image sequence for the model
    image_sequence = previous_frames[-7:]  # Take the last 7 frames
    while len(image_sequence) < 7:
        image_sequence.insert(0, initial_images[len(image_sequence)])

    # Convert the image sequence to a tensor and concatenate in the channel dimension
    image_sequence_tensor = torch.from_numpy(normalize_images(image_sequence, target_range=(-1, 1)))
    image_sequence_tensor = image_sequence_tensor.to(device)
    
    # Prepare the prompt based on the previous actions
    action_descriptions = []
    #initial_actions = ['901:604', '901:604', '901:604', '901:604', '901:604', '901:604', '901:604', '921:604']
    initial_actions = ['0:0'] * 7
    #initial_actions = ['N N N N N : N N N N N'] * 7
    def unnorm_coords(x, y):
        return int(x), int(y) #int(x - (1920 - 256) / 2), int(y - (1080 - 256) / 2)
    
    # Process initial actions if there are not enough previous actions
    while len(previous_actions) < 8:
        x, y = map(int, initial_actions.pop(0).split(':'))
        previous_actions.insert(0, ("N", unnorm_coords(x, y)))
    prev_x = 0
    prev_y = 0
    #print ('here')

    
    
    for action_type, pos in previous_actions: #[-8:]:
        #print ('here3', action_type, pos)
        if action_type == 'move':
            action_type = 'N'
        if action_type == 'left_click':
            action_type = 'L'
        if action_type == "N":
            x, y = pos
            #norm_x = int(round(x / 256 * 1024)) #x + (1920 - 256) / 2
            #norm_y = int(round(y / 256 * 640)) #y + (1080 - 256) / 2
            #norm_x = x + (1920 - 512) / 2
            #norm_y = y + (1080 - 512) / 2
            norm_x = x
            norm_y = y
            if False and DEBUG_TEACHER_FORCING:
                norm_x = x
                norm_y = y
            #action_descriptions.append(f"{(norm_x-prev_x):.0f}~{(norm_y-prev_y):.0f}")
            #action_descriptions.append(format_action(f'{norm_x-prev_x:.0f}~{norm_y-prev_y:.0f}', x==0 and y==0))
            action_descriptions.append(format_action(f'{norm_x:.0f}~{norm_y:.0f}', x==0 and y==0))
            prev_x = norm_x
            prev_y = norm_y
        elif action_type == "L":
            x, y = pos
            #norm_x = int(round(x / 256 * 1024)) #x + (1920 - 256) / 2
            #norm_y = int(round(y / 256 * 640)) #y + (1080 - 256) / 2
            #norm_x = x + (1920 - 512) / 2
            #norm_y = y + (1080 - 512) / 2
            norm_x = x
            norm_y = y
            if False and DEBUG_TEACHER_FORCING:
                norm_x = x #+ (1920 - 512) / 2
                norm_y = y #+ (1080 - 512) / 2
            #if DEBUG:
            #    norm_x = x
            #    norm_y = y
            #action_descriptions.append(f"{(norm_x-prev_x):.0f}~{(norm_y-prev_y):.0f}")
            #action_descriptions.append(format_action(f'{norm_x-prev_x:.0f}~{norm_y-prev_y:.0f}', x==0 and y==0))
            action_descriptions.append(format_action(f'{norm_x:.0f}~{norm_y:.0f}', x==0 and y==0, True))
        elif action_type == "right_click":
            assert False
            action_descriptions.append("right_click")
        else:
            assert False
    
    prompt = " ".join(action_descriptions[-8:])
    print(prompt)
    #prompt = "N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N N N N N N : N N N N N + 0 3 0 7 : + 0 3 7 5"
    #x, y, action_type = parse_action_string(action_descriptions[-1])
    #pos_map, leftclick_map, x_scaled, y_scaled = create_position_and_click_map((x, y), action_type)
    leftclick_maps = []
    pos_maps = []
    for j in range(1, 9):
        print ('fsfs', action_descriptions[-j])
        x, y, action_type = parse_action_string(action_descriptions[-j])
        pos_map_j, leftclick_map_j, x_scaled_j, y_scaled_j = create_position_and_click_map((x, y), action_type)
        leftclick_maps.append(leftclick_map_j)
        pos_maps.append(pos_map_j)
        if j == 1:
            x_scaled = x_scaled_j
            y_scaled = y_scaled_j
        if action_type == 'L':
            all_click_positions.append((x, y))
    
    #prompt = ''
    #prompt = "1~1 0~0 0~0 0~0 0~0 0~0 0~0 0~0"
    print(prompt)
    #prompt = prompt.replace('L', 'N')
    #print ('changing L to N')
    
    # Generate the next frame
    new_frame = sample_frame(model, prompt, image_sequence_tensor, pos_maps=pos_maps, leftclick_maps=leftclick_maps)
    
    # Convert the generated frame to the correct format
    new_frame = new_frame.transpose(1, 2, 0)
    print (new_frame.max(), new_frame.min())
    new_frame_denormalized = denormalize_image(new_frame, source_range=(-1, 1))
    
    # Draw the trace of previous actions
    new_frame_with_trace = draw_trace(new_frame_denormalized, previous_actions, x_scaled, y_scaled)
    
    # Track click positions
    #x, y, action_type = parse_action_string(action_descriptions[-1])
    
    
    return new_frame_with_trace, new_frame_denormalized

# WebSocket endpoint for continuous user interaction
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    global all_click_positions  # Add this line
    all_click_positions = []  # Reset at the start of each connection
    
    client_id = id(websocket)  # Use a unique identifier for each connection
    print(f"New WebSocket connection: {client_id}")
    await websocket.accept()
    previous_frames = []
    previous_actions = []
    positions = ['815~335', '787~342', '787~342', '749~345', '703~346', '703~346', '654~347', '654~347', '604~349', '555~353', '555~353', '509~357', '509~357', '468~362', '431~368', '431~368']
    #positions = ['815~335', '787~342', '749~345', '703~346', '703~346', '654~347', '654~347', '604~349', '555~353', '555~353', '509~357', '509~357', '468~362', '431~368', '431~368']
    positions = ['307~375']
    positions = ['815~335']
    #positions = ['787~342']
    positions = ['300~800']

    if DEBUG_TEACHER_FORCING:
        #print ('here2')
        # Use the predefined actions for image_81
        debug_actions = [
            'N + 0 8 5 3 : + 0 4 5 0', 'N + 0 8 7 1 : + 0 4 6 3',
            'N + 0 8 9 0 : + 0 4 7 5', 'N + 0 9 0 8 : + 0 4 8 8',
            'N + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1',
            'N + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1',
            'N + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1',
            'L + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1',
            'L + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 2 7 : + 0 5 0 1',
            'N + 0 9 2 7 : + 0 5 0 1', #'N + 0 9 2 7 : + 0 5 0 1'
        ]
        debug_actions = [
            'N + 1 1 6 5 : + 0 4 4 3', 'N + 1 1 7 0 : + 0 4 1 8', 
            'N + 1 1 7 5 : + 0 3 9 4', 'N + 1 1 8 1 : + 0 3 7 0', 
            'N + 1 1 8 4 : + 0 3 5 8', 'N + 1 1 8 9 : + 0 3 3 3', 
            'N + 1 1 9 4 : + 0 3 0 9', 'N + 1 1 9 7 : + 0 2 9 7', 
            'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 
            'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 
            'L + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 
            'N + 1 1 9 7 : + 0 2 9 7'
        ]
        debug_actions = [
            'N + 1 1 6 5 : + 0 4 4 3', 'N + 1 1 7 0 : + 0 4 1 8', 
            'N + 1 1 7 5 : + 0 3 9 4', 'N + 1 1 8 1 : + 0 3 7 0', 
            'N + 1 1 8 4 : + 0 3 5 8', 'N + 1 1 8 9 : + 0 3 3 3', 
            'N + 1 1 9 4 : + 0 3 0 9', 'N + 1 1 9 7 : + 0 2 9 7', 
            'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 
            'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 
            'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 
            'N + 1 1 9 7 : + 0 2 9 7'
        ]
        debug_actions = ['N + 0 0 4 0 : + 0 2 0 4', 'N + 0 1 3 8 : + 0 1 9 0', 
                         'N + 0 2 7 4 : + 0 3 8 3', 'N + 0 5 0 1 : + 0 1 7 3', 
                         'L + 0 4 7 3 : + 0 0 8 7', 'N + 0 1 0 9 : + 0 3 4 4', 
                         'N + 0 0 5 2 : + 0 1 9 4', 'N + 0 3 6 5 : + 0 2 3 2', 
                         'N + 0 3 8 9 : + 0 2 4 5', 'N + 0 0 2 0 : + 0 0 5 9', 
                         'N + 0 4 7 3 : + 0 1 5 7', 'L + 0 1 9 1 : + 0 0 8 7', 
                         'L + 0 1 9 1 : + 0 0 8 7', 'N + 0 3 4 3 : + 0 2 6 3', ]
                         #'N + 0 2 0 5 : + 0 1 3 3']
        previous_actions = []
        for action in debug_actions[-8:]:
            #action = action.replace('1 1', '0 4')
            x, y, action_type = parse_action_string(action)
            previous_actions.append((action_type, (x, y)))
        positions = [
            'N + 0 9 2 7 : + 0 5 0 1', 'N + 0 9 1 8 : + 0 4 9 2', 
            'N + 0 9 0 8 : + 0 4 8 3', 'N + 0 8 9 8 : + 0 4 7 4', 
            'N + 0 8 8 9 : + 0 4 6 5', 'N + 0 8 8 0 : + 0 4 5 6', 
            'N + 0 8 7 0 : + 0 4 4 7', 'N + 0 8 6 0 : + 0 4 3 8', 
            'N + 0 8 5 1 : + 0 4 2 9', 'N + 0 8 4 2 : + 0 4 2 0', 
            'N + 0 8 3 2 : + 0 4 1 1', 'N + 0 8 3 2 : + 0 4 1 1'
        ]
        positions = [
            #'L + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 
            'N + 1 1 9 7 : + 0 2 9 7', 'N + 1 1 9 7 : + 0 2 9 7', 
            'N + 1 1 7 9 : + 0 3 0 3', 'N + 1 1 4 2 : + 0 3 1 4', 
            'N + 1 1 0 6 : + 0 3 2 6', 'N + 1 0 6 9 : + 0 3 3 7', 
            'N + 1 0 5 1 : + 0 3 4 3', 'N + 1 0 1 4 : + 0 3 5 4', 
            'N + 0 9 7 8 : + 0 3 6 5', 'N + 0 9 4 2 : + 0 3 7 7', 
            'N + 0 9 0 5 : + 0 3 8 8', 'N + 0 8 6 8 : + 0 4 0 0', 
            'N + 0 8 3 2 : + 0 4 1 1'
        ]
        positions = ['L + 0 1 9 1 : + 0 0 8 7', 
                         'L + 0 1 9 1 : + 0 0 8 7', 'N + 0 3 4 3 : + 0 2 6 3',
                         'N + 0 2 0 5 : + 0 1 3 3', 'N + 0 0 7 6 : + 0 3 4 5', 
                         'N + 0 3 1 8 : + 0 3 3 3', 'N + 0 2 5 4 : + 0 2 9 0', 
                         'N + 0 1 0 6 : + 0 1 6 4', 'N + 0 0 7 4 : + 0 2 8 4', 
                         'N + 0 0 2 4 : + 0 0 4 1', 'N + 0 1 5 0 : + 0 3 8 3', 
                         'N + 0 4 0 5 : + 0 1 6 8', 'N + 0 0 5 4 : + 0 3 2 4', 
                         'N + 0 2 9 0 : + 0 1 4 1', 'N + 0 4 0 2 : + 0 0 0 9', 
                         'N + 0 3 0 7 : + 0 3 3 2', 'N + 0 2 2 0 : + 0 3 7 1', 
                         'N + 0 0 8 2 : + 0 1 5 1']
        positions = positions[3:]
#positions = positions[:4]
        position = positions[0]
        positions = positions[1:]
        x, y, action_type = parse_action_string(position)
        mouse_position = (x, y)
                    
        previous_actions.append((action_type, mouse_position))
    if not DEBUG_TEACHER_FORCING:
        previous_actions = []
    
    for t in range(15):  # Generate 15 actions
        # Random movement
        x = np.random.randint(0, 64)
        y = np.random.randint(0, 48)
        #x = max(0, min(63, x + dx))
        #y = max(0, min(47, y + dy))
                
        # Random click with 20% probability
        if np.random.random() < 0.2:
            action_type = 'L'
        else:
            action_type = 'N'
                
        # Format action string
        previous_actions.append((action_type, (x, y)))
    try:
        while True:
            try:
                # Receive user input with a timeout
                #data = await asyncio.wait_for(websocket.receive_json(), timeout=90000.0)
                data = await websocket.receive_json()

                
                if data.get("type") == "heartbeat":
                    await websocket.send_json({"type": "heartbeat_response"})
                    continue
                
                action_type = data.get("action_type")
                mouse_position = data.get("mouse_position")
                if np.random.random() < 0.9:
                    print ('setting left click')
                    action_type = 'left_click'
                else:
                    print ('not setting left click')
                
                
                # Store the actions
                if DEBUG:
                    position = positions[0]
                    #positions = positions[1:]
                    #mouse_position = position.split('~')
                    #mouse_position = [int(item) for item in mouse_position]
                    #mouse_position = '+ 0 8 1 5 : + 0 3 3 5'
                if False and DEBUG_TEACHER_FORCING:
                    position = positions[0]
                    positions = positions[1:]
                    x, y, action_type = parse_action_string(position)
                    mouse_position = (x, y)
                if False:
                    previous_actions.append((action_type, mouse_position))
                #previous_actions = [(action_type, mouse_position)]
                if not DEBUG_TEACHER_FORCING:
                    x, y = mouse_position
                    mouse_position = (x//8, y//8)
                    previous_actions.append((action_type, mouse_position))
                # Log the start time
                start_time = time.time()
                
                # Predict the next frame based on the previous frames and actions
                if DEBUG_TEACHER_FORCING:
                    print ('predicting', f"record_10003/image_{117+len(previous_frames)}.png")

                next_frame, next_frame_append = predict_next_frame(previous_frames, previous_actions)
                # Load and append the corresponding ground truth image instead of model output
                print ('here4', len(previous_frames))
                if True and DEBUG_TEACHER_FORCING:
                    img = Image.open(f"record_10003/image_{117+len(previous_frames)}.png")
                    previous_frames.append(img)
                else:
                    #assert False
                    previous_frames.append(next_frame_append)
                previous_frames = []
                
                # Convert the numpy array to a base64 encoded image
                img = Image.fromarray(next_frame)
                buffered = io.BytesIO()
                img.save(buffered, format="PNG")
                img_str = base64.b64encode(buffered.getvalue()).decode()
                
                # Log the processing time
                processing_time = time.time() - start_time
                print(f"Frame processing time: {processing_time:.2f} seconds")
                
                # Send the generated frame back to the client
                await websocket.send_json({"image": img_str})
            
            except asyncio.TimeoutError:
                print("WebSocket connection timed out")
                #break  # Exit the loop on timeout
            
            except WebSocketDisconnect:
                print("WebSocket disconnected")
                #break  # Exit the loop on disconnect

    except Exception as e:
        print(f"Error in WebSocket connection {client_id}: {e}")
    
    finally:
        print(f"WebSocket connection closed: {client_id}")
        #await websocket.close()  # Ensure the WebSocket is closed