yunusajib's picture
Modify some app features
5eff629 verified
raw
history blame
7.32 kB
import gradio as gr
import numpy as np
import cv2
import pandas as pd
from datetime import datetime
import time
import librosa
from python_speech_features import mfcc
import onnxruntime as ort
import requests
import os
from sklearn.preprocessing import StandardScaler
import joblib
# Download emotion recognition ONNX model
MODEL_URL = "https://github.com/onnx/models/raw/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx"
MODEL_PATH = "emotion-ferplus-8.onnx"
if not os.path.exists(MODEL_PATH):
print("Downloading emotion recognition model...")
response = requests.get(MODEL_URL)
with open(MODEL_PATH, "wb") as f:
f.write(response.content)
# Initialize face emotion detection
emotion_session = ort.InferenceSession(MODEL_PATH)
emotion_labels = ['neutral', 'happy', 'surprise', 'sad', 'angry', 'disgust', 'fear', 'contempt']
# Simple voice emotion classifier (replace with your own trained model if needed)
class VoiceEmotionClassifier:
def __init__(self):
self.scaler = StandardScaler()
def extract_features(self, audio):
sr, y = audio
y = y.astype(np.float32)
# Convert to mono if stereo
if len(y.shape) > 1:
y = np.mean(y, axis=0)
# Resample to 16kHz if needed
if sr != 16000:
y = librosa.resample(y, orig_sr=sr, target_sr=16000)
sr = 16000
# Extract MFCC features
mfcc_features = mfcc(y, sr, numcep=13)
return np.mean(mfcc_features, axis=0)
def predict(self, audio):
try:
features = self.extract_features(audio).reshape(1, -1)
features = self.scaler.transform(features)
# Simple rule-based classifier (replace with actual trained model)
# This is just a placeholder - you should train a proper model
if features[0, 0] > 0.5:
return "happy", [{"label": "happy", "score": 0.8}]
elif features[0, 0] < -0.5:
return "sad", [{"label": "sad", "score": 0.7}]
else:
return "neutral", [{"label": "neutral", "score": 0.9}]
except Exception as e:
print(f"Voice analysis error: {e}")
return "neutral", [{"label": "neutral", "score": 1.0}]
# Initialize models
voice_classifier = VoiceEmotionClassifier()
# Global variables to store results
emotion_history = []
current_emotions = {"face": "neutral", "voice": "neutral"}
last_update_time = time.time()
def analyze_face(frame):
"""Analyze facial expressions in the frame using ONNX model"""
try:
# Preprocess frame
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
if len(faces) > 0:
x, y, w, h = faces[0]
face_roi = gray[y:y+h, x:x+w]
face_roi = cv2.resize(face_roi, (64, 64))
face_roi = face_roi.astype('float32') / 255.0
face_roi = np.expand_dims(face_roi, axis=0)
face_roi = np.expand_dims(face_roi, axis=0)
# Run inference
input_name = emotion_session.get_inputs()[0].name
output_name = emotion_session.get_outputs()[0].name
results = emotion_session.run([output_name], {input_name: face_roi})[0]
# Get emotion probabilities
emotion_probs = results[0]
dominant_emotion = emotion_labels[np.argmax(emotion_probs)]
# Create emotion dictionary
emotions = {label: float(prob) for label, prob in zip(emotion_labels, emotion_probs)}
return dominant_emotion, emotions
return "neutral", {label: 0.0 for label in emotion_labels}
except Exception as e:
print(f"Face analysis error: {e}")
return "neutral", {label: 0.0 for label in emotion_labels}
def analyze_voice(audio):
"""Analyze voice tone from audio"""
return voice_classifier.predict(audio)
def update_emotion_history(face_emotion, voice_emotion):
"""Update the emotion history and current emotions"""
global current_emotions, emotion_history, last_update_time
current_time = datetime.now().strftime("%H:%M:%S")
# Update current emotions
current_emotions = {
"face": face_emotion,
"voice": voice_emotion,
"timestamp": current_time
}
# Add to history (every 5 seconds or when emotion changes significantly)
if (time.time() - last_update_time) > 5 or not emotion_history:
emotion_history.append({
"timestamp": current_time,
"face": face_emotion,
"voice": voice_emotion
})
last_update_time = time.time()
# Keep only last 20 entries
if len(emotion_history) > 20:
emotion_history = emotion_history[-20:]
def get_emotion_timeline():
"""Create a timeline DataFrame for display"""
if not emotion_history:
return pd.DataFrame(columns=["Time", "Facial Emotion", "Voice Emotion"])
df = pd.DataFrame(emotion_history)
df = df.rename(columns={
"timestamp": "Time",
"face": "Facial Emotion",
"voice": "Voice Emotion"
})
return df
def get_practitioner_advice(face_emotion, voice_emotion):
"""Generate suggestions based on detected emotions"""
advice = []
# Facial emotion advice
if face_emotion in ["sad", "fear"]:
advice.append("Patient appears distressed. Consider speaking more slowly and with reassurance.")
elif face_emotion == "angry":
advice.append("Patient seems frustrated. Acknowledge their concerns and maintain calm demeanor.")
elif face_emotion == "disgust":
advice.append("Patient may be uncomfortable. Check if they're experiencing any discomfort.")
elif face_emotion == "surprise":
advice.append("Patient seems surprised. Ensure they understand all information.")
# Voice emotion advice
if voice_emotion in ["sad", "fear"]:
advice.append("Patient's tone suggests anxiety. Provide clear explanations and emotional support.")
elif voice_emotion == "angry":
advice.append("Patient sounds upset. Practice active listening and validate their feelings.")
elif voice_emotion == "happy":
advice.append("Patient seems positive. This may be a good time to discuss treatment options.")
return "\n".join(advice) if advice else "Patient appears neutral. Continue with consultation."
def process_input(video, audio):
"""Process video and audio inputs to detect emotions"""
try:
# Process video frame
if video is not None:
frame = cv2.cvtColor(video, cv2.COLOR_RGB2BGR)
face_emotion, face_details = analyze_face(frame)
else:
face_emotion, face_details = "neutral", {}
# Process audio
if audio is not None:
voice_emotion, voice_details = analyze_voice(audio)
else:
voice_emotion, voice_details = "neutral", {}
# Update history and get outputs
update_em