File size: 7,320 Bytes
2754fd7
 
 
 
 
 
bf93411
 
9f0f4cc
 
 
5eff629
 
9f0f4cc
 
 
 
 
 
5eff629
9f0f4cc
 
 
2754fd7
5eff629
9f0f4cc
 
2754fd7
5eff629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2754fd7
 
bf93411
2754fd7
 
 
9f0f4cc
2754fd7
9f0f4cc
 
 
 
2754fd7
9f0f4cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2754fd7
9f0f4cc
 
2754fd7
 
9f0f4cc
2754fd7
 
 
5eff629
2754fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf93411
 
 
 
2754fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf93411
2754fd7
 
 
 
 
 
 
 
5eff629
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr
import numpy as np
import cv2
import pandas as pd
from datetime import datetime
import time
import librosa
from python_speech_features import mfcc
import onnxruntime as ort
import requests
import os
from sklearn.preprocessing import StandardScaler
import joblib

# Download emotion recognition ONNX model
MODEL_URL = "https://github.com/onnx/models/raw/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx"
MODEL_PATH = "emotion-ferplus-8.onnx"

if not os.path.exists(MODEL_PATH):
    print("Downloading emotion recognition model...")
    response = requests.get(MODEL_URL)
    with open(MODEL_PATH, "wb") as f:
        f.write(response.content)

# Initialize face emotion detection
emotion_session = ort.InferenceSession(MODEL_PATH)
emotion_labels = ['neutral', 'happy', 'surprise', 'sad', 'angry', 'disgust', 'fear', 'contempt']

# Simple voice emotion classifier (replace with your own trained model if needed)
class VoiceEmotionClassifier:
    def __init__(self):
        self.scaler = StandardScaler()
        
    def extract_features(self, audio):
        sr, y = audio
        y = y.astype(np.float32)
        
        # Convert to mono if stereo
        if len(y.shape) > 1:
            y = np.mean(y, axis=0)
            
        # Resample to 16kHz if needed
        if sr != 16000:
            y = librosa.resample(y, orig_sr=sr, target_sr=16000)
            sr = 16000
            
        # Extract MFCC features
        mfcc_features = mfcc(y, sr, numcep=13)
        return np.mean(mfcc_features, axis=0)
    
    def predict(self, audio):
        try:
            features = self.extract_features(audio).reshape(1, -1)
            features = self.scaler.transform(features)
            
            # Simple rule-based classifier (replace with actual trained model)
            # This is just a placeholder - you should train a proper model
            if features[0, 0] > 0.5:
                return "happy", [{"label": "happy", "score": 0.8}]
            elif features[0, 0] < -0.5:
                return "sad", [{"label": "sad", "score": 0.7}]
            else:
                return "neutral", [{"label": "neutral", "score": 0.9}]
        except Exception as e:
            print(f"Voice analysis error: {e}")
            return "neutral", [{"label": "neutral", "score": 1.0}]

# Initialize models
voice_classifier = VoiceEmotionClassifier()

# Global variables to store results
emotion_history = []
current_emotions = {"face": "neutral", "voice": "neutral"}
last_update_time = time.time()

def analyze_face(frame):
    """Analyze facial expressions in the frame using ONNX model"""
    try:
        # Preprocess frame
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
        faces = face_cascade.detectMultiScale(gray, 1.3, 5)
        
        if len(faces) > 0:
            x, y, w, h = faces[0]
            face_roi = gray[y:y+h, x:x+w]
            face_roi = cv2.resize(face_roi, (64, 64))
            face_roi = face_roi.astype('float32') / 255.0
            face_roi = np.expand_dims(face_roi, axis=0)
            face_roi = np.expand_dims(face_roi, axis=0)
            
            # Run inference
            input_name = emotion_session.get_inputs()[0].name
            output_name = emotion_session.get_outputs()[0].name
            results = emotion_session.run([output_name], {input_name: face_roi})[0]
            
            # Get emotion probabilities
            emotion_probs = results[0]
            dominant_emotion = emotion_labels[np.argmax(emotion_probs)]
            
            # Create emotion dictionary
            emotions = {label: float(prob) for label, prob in zip(emotion_labels, emotion_probs)}
            return dominant_emotion, emotions
        
        return "neutral", {label: 0.0 for label in emotion_labels}
    except Exception as e:
        print(f"Face analysis error: {e}")
        return "neutral", {label: 0.0 for label in emotion_labels}

def analyze_voice(audio):
    """Analyze voice tone from audio"""
    return voice_classifier.predict(audio)

def update_emotion_history(face_emotion, voice_emotion):
    """Update the emotion history and current emotions"""
    global current_emotions, emotion_history, last_update_time
    
    current_time = datetime.now().strftime("%H:%M:%S")
    
    # Update current emotions
    current_emotions = {
        "face": face_emotion,
        "voice": voice_emotion,
        "timestamp": current_time
    }
    
    # Add to history (every 5 seconds or when emotion changes significantly)
    if (time.time() - last_update_time) > 5 or not emotion_history:
        emotion_history.append({
            "timestamp": current_time,
            "face": face_emotion,
            "voice": voice_emotion
        })
        last_update_time = time.time()
        
        # Keep only last 20 entries
        if len(emotion_history) > 20:
            emotion_history = emotion_history[-20:]

def get_emotion_timeline():
    """Create a timeline DataFrame for display"""
    if not emotion_history:
        return pd.DataFrame(columns=["Time", "Facial Emotion", "Voice Emotion"])
    
    df = pd.DataFrame(emotion_history)
    df = df.rename(columns={
        "timestamp": "Time",
        "face": "Facial Emotion",
        "voice": "Voice Emotion"
    })
    return df

def get_practitioner_advice(face_emotion, voice_emotion):
    """Generate suggestions based on detected emotions"""
    advice = []
    
    # Facial emotion advice
    if face_emotion in ["sad", "fear"]:
        advice.append("Patient appears distressed. Consider speaking more slowly and with reassurance.")
    elif face_emotion == "angry":
        advice.append("Patient seems frustrated. Acknowledge their concerns and maintain calm demeanor.")
    elif face_emotion == "disgust":
        advice.append("Patient may be uncomfortable. Check if they're experiencing any discomfort.")
    elif face_emotion == "surprise":
        advice.append("Patient seems surprised. Ensure they understand all information.")
    
    # Voice emotion advice
    if voice_emotion in ["sad", "fear"]:
        advice.append("Patient's tone suggests anxiety. Provide clear explanations and emotional support.")
    elif voice_emotion == "angry":
        advice.append("Patient sounds upset. Practice active listening and validate their feelings.")
    elif voice_emotion == "happy":
        advice.append("Patient seems positive. This may be a good time to discuss treatment options.")
    
    return "\n".join(advice) if advice else "Patient appears neutral. Continue with consultation."

def process_input(video, audio):
    """Process video and audio inputs to detect emotions"""
    try:
        # Process video frame
        if video is not None:
            frame = cv2.cvtColor(video, cv2.COLOR_RGB2BGR)
            face_emotion, face_details = analyze_face(frame)
        else:
            face_emotion, face_details = "neutral", {}
        
        # Process audio
        if audio is not None:
            voice_emotion, voice_details = analyze_voice(audio)
        else:
            voice_emotion, voice_details = "neutral", {}
        
        # Update history and get outputs
        update_em