File size: 7,320 Bytes
2754fd7 bf93411 9f0f4cc 5eff629 9f0f4cc 5eff629 9f0f4cc 2754fd7 5eff629 9f0f4cc 2754fd7 5eff629 2754fd7 bf93411 2754fd7 9f0f4cc 2754fd7 9f0f4cc 2754fd7 9f0f4cc 2754fd7 9f0f4cc 2754fd7 9f0f4cc 2754fd7 5eff629 2754fd7 bf93411 2754fd7 bf93411 2754fd7 5eff629 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
import numpy as np
import cv2
import pandas as pd
from datetime import datetime
import time
import librosa
from python_speech_features import mfcc
import onnxruntime as ort
import requests
import os
from sklearn.preprocessing import StandardScaler
import joblib
# Download emotion recognition ONNX model
MODEL_URL = "https://github.com/onnx/models/raw/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx"
MODEL_PATH = "emotion-ferplus-8.onnx"
if not os.path.exists(MODEL_PATH):
print("Downloading emotion recognition model...")
response = requests.get(MODEL_URL)
with open(MODEL_PATH, "wb") as f:
f.write(response.content)
# Initialize face emotion detection
emotion_session = ort.InferenceSession(MODEL_PATH)
emotion_labels = ['neutral', 'happy', 'surprise', 'sad', 'angry', 'disgust', 'fear', 'contempt']
# Simple voice emotion classifier (replace with your own trained model if needed)
class VoiceEmotionClassifier:
def __init__(self):
self.scaler = StandardScaler()
def extract_features(self, audio):
sr, y = audio
y = y.astype(np.float32)
# Convert to mono if stereo
if len(y.shape) > 1:
y = np.mean(y, axis=0)
# Resample to 16kHz if needed
if sr != 16000:
y = librosa.resample(y, orig_sr=sr, target_sr=16000)
sr = 16000
# Extract MFCC features
mfcc_features = mfcc(y, sr, numcep=13)
return np.mean(mfcc_features, axis=0)
def predict(self, audio):
try:
features = self.extract_features(audio).reshape(1, -1)
features = self.scaler.transform(features)
# Simple rule-based classifier (replace with actual trained model)
# This is just a placeholder - you should train a proper model
if features[0, 0] > 0.5:
return "happy", [{"label": "happy", "score": 0.8}]
elif features[0, 0] < -0.5:
return "sad", [{"label": "sad", "score": 0.7}]
else:
return "neutral", [{"label": "neutral", "score": 0.9}]
except Exception as e:
print(f"Voice analysis error: {e}")
return "neutral", [{"label": "neutral", "score": 1.0}]
# Initialize models
voice_classifier = VoiceEmotionClassifier()
# Global variables to store results
emotion_history = []
current_emotions = {"face": "neutral", "voice": "neutral"}
last_update_time = time.time()
def analyze_face(frame):
"""Analyze facial expressions in the frame using ONNX model"""
try:
# Preprocess frame
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
if len(faces) > 0:
x, y, w, h = faces[0]
face_roi = gray[y:y+h, x:x+w]
face_roi = cv2.resize(face_roi, (64, 64))
face_roi = face_roi.astype('float32') / 255.0
face_roi = np.expand_dims(face_roi, axis=0)
face_roi = np.expand_dims(face_roi, axis=0)
# Run inference
input_name = emotion_session.get_inputs()[0].name
output_name = emotion_session.get_outputs()[0].name
results = emotion_session.run([output_name], {input_name: face_roi})[0]
# Get emotion probabilities
emotion_probs = results[0]
dominant_emotion = emotion_labels[np.argmax(emotion_probs)]
# Create emotion dictionary
emotions = {label: float(prob) for label, prob in zip(emotion_labels, emotion_probs)}
return dominant_emotion, emotions
return "neutral", {label: 0.0 for label in emotion_labels}
except Exception as e:
print(f"Face analysis error: {e}")
return "neutral", {label: 0.0 for label in emotion_labels}
def analyze_voice(audio):
"""Analyze voice tone from audio"""
return voice_classifier.predict(audio)
def update_emotion_history(face_emotion, voice_emotion):
"""Update the emotion history and current emotions"""
global current_emotions, emotion_history, last_update_time
current_time = datetime.now().strftime("%H:%M:%S")
# Update current emotions
current_emotions = {
"face": face_emotion,
"voice": voice_emotion,
"timestamp": current_time
}
# Add to history (every 5 seconds or when emotion changes significantly)
if (time.time() - last_update_time) > 5 or not emotion_history:
emotion_history.append({
"timestamp": current_time,
"face": face_emotion,
"voice": voice_emotion
})
last_update_time = time.time()
# Keep only last 20 entries
if len(emotion_history) > 20:
emotion_history = emotion_history[-20:]
def get_emotion_timeline():
"""Create a timeline DataFrame for display"""
if not emotion_history:
return pd.DataFrame(columns=["Time", "Facial Emotion", "Voice Emotion"])
df = pd.DataFrame(emotion_history)
df = df.rename(columns={
"timestamp": "Time",
"face": "Facial Emotion",
"voice": "Voice Emotion"
})
return df
def get_practitioner_advice(face_emotion, voice_emotion):
"""Generate suggestions based on detected emotions"""
advice = []
# Facial emotion advice
if face_emotion in ["sad", "fear"]:
advice.append("Patient appears distressed. Consider speaking more slowly and with reassurance.")
elif face_emotion == "angry":
advice.append("Patient seems frustrated. Acknowledge their concerns and maintain calm demeanor.")
elif face_emotion == "disgust":
advice.append("Patient may be uncomfortable. Check if they're experiencing any discomfort.")
elif face_emotion == "surprise":
advice.append("Patient seems surprised. Ensure they understand all information.")
# Voice emotion advice
if voice_emotion in ["sad", "fear"]:
advice.append("Patient's tone suggests anxiety. Provide clear explanations and emotional support.")
elif voice_emotion == "angry":
advice.append("Patient sounds upset. Practice active listening and validate their feelings.")
elif voice_emotion == "happy":
advice.append("Patient seems positive. This may be a good time to discuss treatment options.")
return "\n".join(advice) if advice else "Patient appears neutral. Continue with consultation."
def process_input(video, audio):
"""Process video and audio inputs to detect emotions"""
try:
# Process video frame
if video is not None:
frame = cv2.cvtColor(video, cv2.COLOR_RGB2BGR)
face_emotion, face_details = analyze_face(frame)
else:
face_emotion, face_details = "neutral", {}
# Process audio
if audio is not None:
voice_emotion, voice_details = analyze_voice(audio)
else:
voice_emotion, voice_details = "neutral", {}
# Update history and get outputs
update_em |