yunusajib's picture
update
8c8fae6 verified
raw
history blame
13.9 kB
import gradio as gr
import numpy as np
import cv2
import pandas as pd
from datetime import datetime
import time
import librosa
import joblib
from python_speech_features import mfcc
import onnxruntime as ort
import requests
import os
from sklearn.preprocessing import StandardScaler
# Constants
MODEL_URL = "https://github.com/onnx/models/raw/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx"
MODEL_PATH = "emotion-ferplus-8.onnx"
MODEL_CHECKSUM_SIZE = 2483870 # Expected file size in bytes for verification
VOICE_MODEL_PATH = "voice_emotion_model.pkl" # Pretrained voice model
VOICE_SCALER_PATH = "voice_scaler.pkl" # Pretrained voice scaler
class EmotionModel:
def __init__(self):
self.session = None
self.labels = ['neutral', 'happy', 'surprise', 'sad', 'angry', 'disgust', 'fear', 'contempt']
self.emotion_buffer = [] # For temporal smoothing
self.load_model()
def download_model(self):
try:
print("Downloading emotion recognition model...")
response = requests.get(MODEL_URL, stream=True, timeout=30)
response.raise_for_status()
with open(MODEL_PATH, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
# Verify download
if os.path.exists(MODEL_PATH):
actual_size = os.path.getsize(MODEL_PATH)
if actual_size != MODEL_CHECKSUM_SIZE:
print(f"Warning: Downloaded file size {actual_size} doesn't match expected size {MODEL_CHECKSUM_SIZE}")
return True
return False
except Exception as e:
print(f"Download failed: {str(e)}")
return False
def load_model(self):
if not os.path.exists(MODEL_PATH):
if not self.download_model():
raise RuntimeError("Failed to download emotion model")
try:
so = ort.SessionOptions()
so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
self.session = ort.InferenceSession(MODEL_PATH, so)
# Test the model with dummy input
dummy_input = np.random.rand(1, 1, 64, 64).astype(np.float32)
self.session.run(None, {'Input3': dummy_input})
print("Emotion model loaded and verified")
except Exception as e:
raise RuntimeError(f"Failed to load/verify ONNX model: {str(e)}")
def softmax(self, x):
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
def predict(self, frame):
# Apply temporal smoothing
raw_prediction = self.session.run(None, {'Input3': frame})[0][0]
self.emotion_buffer.append(raw_prediction)
# Keep only last 5 predictions for smoothing
if len(self.emotion_buffer) > 5:
self.emotion_buffer = self.emotion_buffer[-5:]
# Apply moving average
smoothed_probs = np.mean(self.emotion_buffer, axis=0)
return self.softmax(smoothed_probs).reshape(1, -1)
class VoiceEmotionClassifier:
def __init__(self):
try:
# Load pretrained models if available
if os.path.exists(VOICE_MODEL_PATH) and os.path.exists(VOICE_SCALER_PATH):
self.model = joblib.load(VOICE_MODEL_PATH)
self.scaler = joblib.load(VOICE_SCALER_PATH)
self.labels = ['neutral', 'happy', 'sad', 'angry', 'fear']
print("Loaded pretrained voice emotion model")
else:
raise FileNotFoundError("Pretrained voice model not found")
except Exception as e:
print(f"Voice model loading failed: {str(e)}")
print("Using limited rule-based voice analysis")
self.model = None
self.scaler = StandardScaler()
# Initialize with dummy data for scaling
dummy_features = np.random.randn(100, 18)
self.scaler.fit(dummy_features)
self.labels = ['neutral', 'happy', 'sad', 'angry', 'fear']
def extract_features(self, audio):
try:
y, sr = audio
features = []
if len(y.shape) > 1: # Convert stereo to mono
y = np.mean(y, axis=0)
if sr != 16000: # Resample if needed
y = librosa.resample(y, orig_sr=sr, target_sr=16000)
sr = 16000
# MFCC features
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
features.extend(np.mean(mfccs, axis=1))
features.extend(np.std(mfccs, axis=1))
# Pitch features
pitches = librosa.yin(y, fmin=80, fmax=400)
features.append(np.nanmean(pitches))
features.append(np.nanstd(pitches))
# Spectral features
spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)
features.append(np.mean(spectral_centroid))
return np.array(features)
except Exception as e:
print(f"Feature extraction error: {str(e)}")
return np.zeros(18) if self.model else np.zeros(13)
def predict(self, audio):
try:
features = self.extract_features(audio).reshape(1, -1)
features = self.scaler.transform(features)
if self.model:
probs = self.model.predict_proba(features)[0]
emotion = self.labels[np.argmax(probs)]
details = [{"label": l, "score": p} for l, p in zip(self.labels, probs)]
else:
# Fallback rule-based classifier
if features[0, 0] > 1.0:
emotion = "happy"
details = [{"label": "happy", "score": 0.8}]
elif features[0, 0] < -1.0:
emotion = "sad"
details = [{"label": "sad", "score": 0.7}]
elif abs(features[0, 1]) > 0.8:
emotion = "angry"
details = [{"label": "angry", "score": 0.6}]
else:
emotion = "neutral"
details = [{"label": "neutral", "score": 0.9}]
return emotion, details
except Exception as e:
print(f"Voice prediction error: {str(e)}")
return "neutral", [{"label": "neutral", "score": 1.0}]
# Initialize models
emotion_model = EmotionModel()
voice_classifier = VoiceEmotionClassifier()
# Global variables to store results
emotion_history = []
current_emotions = {"face": "neutral", "voice": "neutral"}
last_update_time = time.time()
def analyze_face(frame):
"""Analyze facial expressions in the frame using ONNX model"""
try:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
if len(faces) > 0:
x, y, w, h = faces[0]
face_roi = gray[y:y+h, x:x+w]
# Correct preprocessing for FER+ model
face_roi = cv2.resize(face_roi, (64, 64))
face_roi = face_roi.astype('float32')
face_roi = (face_roi - 127.5) / 127.5 # Normalize to [-1, 1] range
face_roi = np.expand_dims(face_roi, axis=(0, 1))
results = emotion_model.predict(face_roi)
emotion_probs = results[0]
# Only accept predictions with confidence > 0.5
if np.max(emotion_probs) < 0.5:
return "uncertain", {label: 0.0 for label in emotion_model.labels}
dominant_emotion = emotion_model.labels[np.argmax(emotion_probs)]
emotions = {label: float(prob) for label, prob in zip(emotion_model.labels, emotion_probs)}
return dominant_emotion, emotions
return "neutral", {label: 0.0 for label in emotion_model.labels}
except Exception as e:
print(f"Face analysis error: {str(e)}")
return "neutral", {label: 0.0 for label in emotion_model.labels}
def analyze_voice(audio):
"""Analyze voice tone from audio"""
return voice_classifier.predict(audio)
def update_emotion_history(face_emotion, voice_emotion):
"""Update the emotion history and current emotions"""
global current_emotions, emotion_history, last_update_time
current_time = datetime.now().strftime("%H:%M:%S")
current_emotions = {
"face": face_emotion,
"voice": voice_emotion,
"timestamp": current_time
}
if (time.time() - last_update_time) > 5 or not emotion_history:
emotion_history.append(current_emotions.copy())
last_update_time = time.time()
if len(emotion_history) > 20:
emotion_history = emotion_history[-20:]
def get_emotion_timeline():
"""Create a timeline DataFrame for display"""
if not emotion_history:
return pd.DataFrame(columns=["Time", "Facial Emotion", "Voice Emotion"])
df = pd.DataFrame(emotion_history)
df = df.rename(columns={
"timestamp": "Time",
"face": "Facial Emotion",
"voice": "Voice Emotion"
})
return df
def get_practitioner_advice(face_emotion, voice_emotion):
"""Generate suggestions based on detected emotions"""
advice = []
# Facial emotion advice
if face_emotion in ["sad", "fear"]:
advice.append("Patient appears distressed. Consider speaking more slowly and with reassurance.")
elif face_emotion == "angry":
advice.append("Patient seems frustrated. Acknowledge their concerns and maintain calm demeanor.")
elif face_emotion == "disgust":
advice.append("Patient may be uncomfortable. Check if they're experiencing any discomfort.")
elif face_emotion == "surprise":
advice.append("Patient seems surprised. Ensure they understand all information.")
elif face_emotion == "uncertain":
advice.append("Facial expression unclear. Pay closer attention to verbal cues.")
# Voice emotion advice
if voice_emotion in ["sad", "fear"]:
advice.append("Patient's tone suggests anxiety. Provide clear explanations and emotional support.")
elif voice_emotion == "angry":
advice.append("Patient sounds upset. Practice active listening and validate their feelings.")
elif voice_emotion == "happy":
advice.append("Patient seems positive. This may be a good time to discuss treatment options.")
return "\n".join(advice) if advice else "Patient appears neutral. Continue with consultation."
def process_input(video, audio):
"""Process video and audio inputs to detect emotions"""
try:
# Process video frame
if video is not None:
frame = cv2.cvtColor(video, cv2.COLOR_RGB2BGR)
face_emotion, face_details = analyze_face(frame)
else:
face_emotion, face_details = "neutral", {}
# Process audio
if audio is not None:
voice_emotion, voice_details = analyze_voice(audio)
else:
voice_emotion, voice_details = "neutral", {}
update_emotion_history(face_emotion, voice_emotion)
timeline_df = get_emotion_timeline()
advice = get_practitioner_advice(face_emotion, voice_emotion)
return (
face_emotion,
voice_emotion,
timeline_df,
advice,
str(face_details),
str(voice_details)
)
except Exception as e:
print(f"Processing error: {str(e)}")
return (
"Error",
"Error",
pd.DataFrame(),
"System error occurred",
"",
""
)
# Gradio interface
with gr.Blocks(title="Patient Emotion Recognition", theme="soft") as demo:
gr.Markdown("# Real-Time Patient Emotion Recognition")
gr.Markdown("Analyze facial expressions and voice tone during medical consultations")
with gr.Row():
with gr.Column():
video_input = gr.Image(label="Live Camera Feed", streaming=True)
audio_input = gr.Audio(label="Voice Input", sources=["microphone"], type="numpy")
submit_btn = gr.Button("Analyze Emotions")
with gr.Column():
current_face = gr.Textbox(label="Current Facial Emotion")
current_voice = gr.Textbox(label="Current Voice Emotion")
advice_output = gr.Textbox(label="Practitioner Suggestions", lines=3)
timeline_output = gr.Dataframe(label="Emotion Timeline", interactive=False)
face_details = gr.Textbox(label="Face Analysis Details", visible=False)
voice_details = gr.Textbox(label="Voice Analysis Details", visible=False)
# Live processing
video_input.change(
process_input,
inputs=[video_input, audio_input],
outputs=[current_face, current_voice, timeline_output, advice_output, face_details, voice_details],
show_progress="hidden"
)
audio_input.change(
process_input,
inputs=[video_input, audio_input],
outputs=[current_face, current_voice, timeline_output, advice_output, face_details, voice_details],
show_progress="hidden"
)
submit_btn.click(
process_input,
inputs=[video_input, audio_input],
outputs=[current_face, current_voice, timeline_output, advice_output, face_details, voice_details]
)
if __name__ == "__main__":
demo.launch(debug=True, server_name="0.0.0.0", server_port=7860)