File size: 13,926 Bytes
2754fd7
 
 
 
 
 
bf93411
8c8fae6
bf93411
9f0f4cc
 
 
5eff629
9f0f4cc
054ccd5
9f0f4cc
 
054ccd5
8c8fae6
 
9f0f4cc
054ccd5
 
 
 
8c8fae6
054ccd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c8fae6
054ccd5
 
 
 
 
8c8fae6
 
 
 
 
054ccd5
8c8fae6
 
 
 
 
054ccd5
 
8c8fae6
 
 
 
 
 
 
 
 
 
 
2754fd7
5eff629
 
8c8fae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eff629
 
054ccd5
8c8fae6
 
5eff629
054ccd5
 
 
 
 
 
 
8c8fae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054ccd5
 
8c8fae6
5eff629
 
 
 
 
 
8c8fae6
 
 
 
5eff629
8c8fae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eff629
054ccd5
5eff629
 
 
054ccd5
5eff629
 
2754fd7
 
bf93411
2754fd7
 
 
9f0f4cc
2754fd7
9f0f4cc
 
 
2754fd7
9f0f4cc
 
 
8c8fae6
 
9f0f4cc
8c8fae6
 
054ccd5
9f0f4cc
054ccd5
9f0f4cc
 
8c8fae6
 
 
 
 
054ccd5
2754fd7
9f0f4cc
054ccd5
2754fd7
054ccd5
 
2754fd7
 
 
5eff629
2754fd7
 
 
 
 
 
 
 
 
 
 
 
 
054ccd5
2754fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf93411
 
 
 
8c8fae6
 
2754fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf93411
2754fd7
 
 
 
 
 
 
3baa918
 
 
 
8391b54
8c8fae6
 
 
 
 
 
8391b54
3baa918
054ccd5
8391b54
8c8fae6
 
 
 
 
 
8391b54
3baa918
 
 
 
 
 
 
 
3eebee3
 
3baa918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054ccd5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import gradio as gr
import numpy as np
import cv2
import pandas as pd
from datetime import datetime
import time
import librosa
import joblib
from python_speech_features import mfcc
import onnxruntime as ort
import requests
import os
from sklearn.preprocessing import StandardScaler

# Constants
MODEL_URL = "https://github.com/onnx/models/raw/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx"
MODEL_PATH = "emotion-ferplus-8.onnx"
MODEL_CHECKSUM_SIZE = 2483870  # Expected file size in bytes for verification
VOICE_MODEL_PATH = "voice_emotion_model.pkl"  # Pretrained voice model
VOICE_SCALER_PATH = "voice_scaler.pkl"  # Pretrained voice scaler

class EmotionModel:
    def __init__(self):
        self.session = None
        self.labels = ['neutral', 'happy', 'surprise', 'sad', 'angry', 'disgust', 'fear', 'contempt']
        self.emotion_buffer = []  # For temporal smoothing
        self.load_model()
        
    def download_model(self):
        try:
            print("Downloading emotion recognition model...")
            response = requests.get(MODEL_URL, stream=True, timeout=30)
            response.raise_for_status()
            
            with open(MODEL_PATH, "wb") as f:
                for chunk in response.iter_content(chunk_size=8192):
                    if chunk:
                        f.write(chunk)
            
            # Verify download
            if os.path.exists(MODEL_PATH):
                actual_size = os.path.getsize(MODEL_PATH)
                if actual_size != MODEL_CHECKSUM_SIZE:
                    print(f"Warning: Downloaded file size {actual_size} doesn't match expected size {MODEL_CHECKSUM_SIZE}")
                return True
            return False
        except Exception as e:
            print(f"Download failed: {str(e)}")
            return False
    
    def load_model(self):
        if not os.path.exists(MODEL_PATH):
            if not self.download_model():
                raise RuntimeError("Failed to download emotion model")
        
        try:
            so = ort.SessionOptions()
            so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
            self.session = ort.InferenceSession(MODEL_PATH, so)
            
            # Test the model with dummy input
            dummy_input = np.random.rand(1, 1, 64, 64).astype(np.float32)
            self.session.run(None, {'Input3': dummy_input})
            print("Emotion model loaded and verified")
        except Exception as e:
            raise RuntimeError(f"Failed to load/verify ONNX model: {str(e)}")
    
    def softmax(self, x):
        e_x = np.exp(x - np.max(x))
        return e_x / e_x.sum()
    
    def predict(self, frame):
        # Apply temporal smoothing
        raw_prediction = self.session.run(None, {'Input3': frame})[0][0]
        self.emotion_buffer.append(raw_prediction)
        
        # Keep only last 5 predictions for smoothing
        if len(self.emotion_buffer) > 5:
            self.emotion_buffer = self.emotion_buffer[-5:]
        
        # Apply moving average
        smoothed_probs = np.mean(self.emotion_buffer, axis=0)
        return self.softmax(smoothed_probs).reshape(1, -1)

class VoiceEmotionClassifier:
    def __init__(self):
        try:
            # Load pretrained models if available
            if os.path.exists(VOICE_MODEL_PATH) and os.path.exists(VOICE_SCALER_PATH):
                self.model = joblib.load(VOICE_MODEL_PATH)
                self.scaler = joblib.load(VOICE_SCALER_PATH)
                self.labels = ['neutral', 'happy', 'sad', 'angry', 'fear']
                print("Loaded pretrained voice emotion model")
            else:
                raise FileNotFoundError("Pretrained voice model not found")
        except Exception as e:
            print(f"Voice model loading failed: {str(e)}")
            print("Using limited rule-based voice analysis")
            self.model = None
            self.scaler = StandardScaler()
            # Initialize with dummy data for scaling
            dummy_features = np.random.randn(100, 18)
            self.scaler.fit(dummy_features)
            self.labels = ['neutral', 'happy', 'sad', 'angry', 'fear']
        
    def extract_features(self, audio):
        try:
            y, sr = audio
            features = []
            
            if len(y.shape) > 1:  # Convert stereo to mono
                y = np.mean(y, axis=0)
                
            if sr != 16000:  # Resample if needed
                y = librosa.resample(y, orig_sr=sr, target_sr=16000)
                sr = 16000
                
            # MFCC features
            mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
            features.extend(np.mean(mfccs, axis=1))
            features.extend(np.std(mfccs, axis=1))
            
            # Pitch features
            pitches = librosa.yin(y, fmin=80, fmax=400)
            features.append(np.nanmean(pitches))
            features.append(np.nanstd(pitches))
            
            # Spectral features
            spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)
            features.append(np.mean(spectral_centroid))
            
            return np.array(features)
        except Exception as e:
            print(f"Feature extraction error: {str(e)}")
            return np.zeros(18) if self.model else np.zeros(13)
    
    def predict(self, audio):
        try:
            features = self.extract_features(audio).reshape(1, -1)
            features = self.scaler.transform(features)
            
            if self.model:
                probs = self.model.predict_proba(features)[0]
                emotion = self.labels[np.argmax(probs)]
                details = [{"label": l, "score": p} for l, p in zip(self.labels, probs)]
            else:
                # Fallback rule-based classifier
                if features[0, 0] > 1.0:
                    emotion = "happy"
                    details = [{"label": "happy", "score": 0.8}]
                elif features[0, 0] < -1.0:
                    emotion = "sad"
                    details = [{"label": "sad", "score": 0.7}]
                elif abs(features[0, 1]) > 0.8:
                    emotion = "angry"
                    details = [{"label": "angry", "score": 0.6}]
                else:
                    emotion = "neutral"
                    details = [{"label": "neutral", "score": 0.9}]
            
            return emotion, details
        except Exception as e:
            print(f"Voice prediction error: {str(e)}")
            return "neutral", [{"label": "neutral", "score": 1.0}]

# Initialize models
emotion_model = EmotionModel()
voice_classifier = VoiceEmotionClassifier()

# Global variables to store results
emotion_history = []
current_emotions = {"face": "neutral", "voice": "neutral"}
last_update_time = time.time()

def analyze_face(frame):
    """Analyze facial expressions in the frame using ONNX model"""
    try:
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
        faces = face_cascade.detectMultiScale(gray, 1.3, 5)
        
        if len(faces) > 0:
            x, y, w, h = faces[0]
            face_roi = gray[y:y+h, x:x+w]
            
            # Correct preprocessing for FER+ model
            face_roi = cv2.resize(face_roi, (64, 64))
            face_roi = face_roi.astype('float32')
            face_roi = (face_roi - 127.5) / 127.5  # Normalize to [-1, 1] range
            face_roi = np.expand_dims(face_roi, axis=(0, 1))
            
            results = emotion_model.predict(face_roi)
            emotion_probs = results[0]
            
            # Only accept predictions with confidence > 0.5
            if np.max(emotion_probs) < 0.5:
                return "uncertain", {label: 0.0 for label in emotion_model.labels}
            
            dominant_emotion = emotion_model.labels[np.argmax(emotion_probs)]
            emotions = {label: float(prob) for label, prob in zip(emotion_model.labels, emotion_probs)}
            return dominant_emotion, emotions
        
        return "neutral", {label: 0.0 for label in emotion_model.labels}
    except Exception as e:
        print(f"Face analysis error: {str(e)}")
        return "neutral", {label: 0.0 for label in emotion_model.labels}

def analyze_voice(audio):
    """Analyze voice tone from audio"""
    return voice_classifier.predict(audio)

def update_emotion_history(face_emotion, voice_emotion):
    """Update the emotion history and current emotions"""
    global current_emotions, emotion_history, last_update_time
    
    current_time = datetime.now().strftime("%H:%M:%S")
    current_emotions = {
        "face": face_emotion,
        "voice": voice_emotion,
        "timestamp": current_time
    }
    
    if (time.time() - last_update_time) > 5 or not emotion_history:
        emotion_history.append(current_emotions.copy())
        last_update_time = time.time()
        
        if len(emotion_history) > 20:
            emotion_history = emotion_history[-20:]

def get_emotion_timeline():
    """Create a timeline DataFrame for display"""
    if not emotion_history:
        return pd.DataFrame(columns=["Time", "Facial Emotion", "Voice Emotion"])
    
    df = pd.DataFrame(emotion_history)
    df = df.rename(columns={
        "timestamp": "Time",
        "face": "Facial Emotion",
        "voice": "Voice Emotion"
    })
    return df

def get_practitioner_advice(face_emotion, voice_emotion):
    """Generate suggestions based on detected emotions"""
    advice = []
    
    # Facial emotion advice
    if face_emotion in ["sad", "fear"]:
        advice.append("Patient appears distressed. Consider speaking more slowly and with reassurance.")
    elif face_emotion == "angry":
        advice.append("Patient seems frustrated. Acknowledge their concerns and maintain calm demeanor.")
    elif face_emotion == "disgust":
        advice.append("Patient may be uncomfortable. Check if they're experiencing any discomfort.")
    elif face_emotion == "surprise":
        advice.append("Patient seems surprised. Ensure they understand all information.")
    elif face_emotion == "uncertain":
        advice.append("Facial expression unclear. Pay closer attention to verbal cues.")
    
    # Voice emotion advice
    if voice_emotion in ["sad", "fear"]:
        advice.append("Patient's tone suggests anxiety. Provide clear explanations and emotional support.")
    elif voice_emotion == "angry":
        advice.append("Patient sounds upset. Practice active listening and validate their feelings.")
    elif voice_emotion == "happy":
        advice.append("Patient seems positive. This may be a good time to discuss treatment options.")
    
    return "\n".join(advice) if advice else "Patient appears neutral. Continue with consultation."

def process_input(video, audio):
    """Process video and audio inputs to detect emotions"""
    try:
        # Process video frame
        if video is not None:
            frame = cv2.cvtColor(video, cv2.COLOR_RGB2BGR)
            face_emotion, face_details = analyze_face(frame)
        else:
            face_emotion, face_details = "neutral", {}
        
        # Process audio
        if audio is not None:
            voice_emotion, voice_details = analyze_voice(audio)
        else:
            voice_emotion, voice_details = "neutral", {}
        
        update_emotion_history(face_emotion, voice_emotion)
        timeline_df = get_emotion_timeline()
        advice = get_practitioner_advice(face_emotion, voice_emotion)
        
        return (
            face_emotion,
            voice_emotion,
            timeline_df,
            advice,
            str(face_details),
            str(voice_details)
        )
    except Exception as e:
        print(f"Processing error: {str(e)}")
        return (
            "Error",
            "Error",
            pd.DataFrame(),
            "System error occurred",
            "",
            ""
        )

# Gradio interface
with gr.Blocks(title="Patient Emotion Recognition", theme="soft") as demo:
    gr.Markdown("# Real-Time Patient Emotion Recognition")
    gr.Markdown("Analyze facial expressions and voice tone during medical consultations")
    
    with gr.Row():
        with gr.Column():
            video_input = gr.Image(label="Live Camera Feed", streaming=True)
            audio_input = gr.Audio(label="Voice Input", sources=["microphone"], type="numpy")
            submit_btn = gr.Button("Analyze Emotions")
        
        with gr.Column():
            current_face = gr.Textbox(label="Current Facial Emotion")
            current_voice = gr.Textbox(label="Current Voice Emotion")
            advice_output = gr.Textbox(label="Practitioner Suggestions", lines=3)
            timeline_output = gr.Dataframe(label="Emotion Timeline", interactive=False)
            face_details = gr.Textbox(label="Face Analysis Details", visible=False)
            voice_details = gr.Textbox(label="Voice Analysis Details", visible=False)
    
    # Live processing
    video_input.change(
        process_input,
        inputs=[video_input, audio_input],
        outputs=[current_face, current_voice, timeline_output, advice_output, face_details, voice_details],
        show_progress="hidden"
    )
    
    audio_input.change(
        process_input,
        inputs=[video_input, audio_input],
        outputs=[current_face, current_voice, timeline_output, advice_output, face_details, voice_details],
        show_progress="hidden"
    )
    
    submit_btn.click(
        process_input,
        inputs=[video_input, audio_input],
        outputs=[current_face, current_voice, timeline_output, advice_output, face_details, voice_details]
    )

if __name__ == "__main__":
    demo.launch(debug=True, server_name="0.0.0.0", server_port=7860)