yunusajib's picture
app
38fef5b verified
import gradio as gr
import cv2
import numpy as np
import librosa
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import warnings
warnings.filterwarnings('ignore')
# Mock emotion detection functions (replace with actual models in production)
class EmotionAnalyzer:
def __init__(self):
# In production, load actual pretrained models here
self.face_emotions = ['neutral', 'happy', 'sad', 'angry', 'fear', 'disgust', 'surprise']
self.voice_emotions = ['calm', 'stressed', 'anxious', 'confused', 'pain', 'frustrated']
self.session_data = []
def analyze_facial_expression(self, frame):
"""Simulate facial expression analysis"""
# In production: use actual face detection + emotion recognition model
# Example: face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# Mock analysis - replace with actual model inference
emotions = {
'neutral': np.random.uniform(0.1, 0.7),
'happy': np.random.uniform(0.0, 0.3),
'sad': np.random.uniform(0.0, 0.4),
'angry': np.random.uniform(0.0, 0.2),
'fear': np.random.uniform(0.0, 0.3),
'disgust': np.random.uniform(0.0, 0.1),
'surprise': np.random.uniform(0.0, 0.2)
}
# Normalize to sum to 1
total = sum(emotions.values())
emotions = {k: v/total for k, v in emotions.items()}
return emotions
def analyze_voice_emotion(self, audio_data, sample_rate):
"""Simulate voice emotion analysis"""
if audio_data is None or len(audio_data) == 0:
return {'calm': 1.0}
# Extract audio features (these would be used with actual models)
try:
# Basic audio feature extraction
mfcc = librosa.feature.mfcc(y=audio_data, sr=sample_rate, n_mfcc=13)
spectral_centroid = librosa.feature.spectral_centroid(y=audio_data, sr=sample_rate)
zero_crossing_rate = librosa.feature.zero_crossing_rate(audio_data)
# Mock emotion prediction based on audio characteristics
energy = np.mean(audio_data**2)
pitch_var = np.var(spectral_centroid)
# Simulate emotion detection based on audio features
emotions = {
'calm': max(0.1, 0.8 - energy * 10),
'stressed': min(0.8, energy * 5 + pitch_var * 100),
'anxious': min(0.7, pitch_var * 150),
'confused': np.random.uniform(0.0, 0.3),
'pain': min(0.6, energy * 8 if energy > 0.1 else 0.0),
'frustrated': min(0.5, energy * 3 + pitch_var * 80)
}
# Normalize
total = sum(emotions.values())
emotions = {k: v/total for k, v in emotions.items()}
except Exception as e:
# Fallback if audio processing fails
emotions = {'calm': 1.0}
return emotions
def process_consultation_data(self, video_file, audio_file):
"""Process video and audio files for emotion analysis"""
results = {
'timestamp': [],
'facial_emotions': [],
'voice_emotions': [],
'alerts': []
}
# Process video file
if video_file is not None:
cap = cv2.VideoCapture(video_file)
frame_count = 0
while cap.read()[0] and frame_count < 100: # Limit for demo
ret, frame = cap.read()
if not ret:
break
if frame_count % 30 == 0: # Analyze every 30th frame
facial_emotions = self.analyze_facial_expression(frame)
timestamp = frame_count / 30 # Assuming 30 FPS
results['timestamp'].append(timestamp)
results['facial_emotions'].append(facial_emotions)
# Check for alerts
if facial_emotions.get('sad', 0) > 0.4 or facial_emotions.get('fear', 0) > 0.3:
results['alerts'].append(f"High stress/sadness detected at {timestamp:.1f}s")
frame_count += 1
cap.release()
# Process audio file
if audio_file is not None:
try:
audio_data, sample_rate = librosa.load(audio_file, duration=60) # Limit for demo
# Analyze audio in chunks
chunk_duration = 3 # seconds
chunk_samples = chunk_duration * sample_rate
for i in range(0, len(audio_data), chunk_samples):
chunk = audio_data[i:i+chunk_samples]
if len(chunk) > sample_rate: # Minimum 1 second
voice_emotions = self.analyze_voice_emotion(chunk, sample_rate)
timestamp = i / sample_rate
if len(results['voice_emotions']) <= len(results['timestamp']):
results['voice_emotions'].append(voice_emotions)
# Check for voice-based alerts
if voice_emotions.get('pain', 0) > 0.4 or voice_emotions.get('stressed', 0) > 0.5:
results['alerts'].append(f"Voice stress/pain detected at {timestamp:.1f}s")
except Exception as e:
print(f"Audio processing error: {e}")
return results
# Initialize analyzer
analyzer = EmotionAnalyzer()
def create_emotion_timeline(data):
"""Create timeline visualization of emotions"""
if not data['timestamp']:
return go.Figure()
fig = go.Figure()
# Plot facial emotions
if data['facial_emotions']:
for emotion in ['sad', 'fear', 'angry', 'neutral', 'happy']:
values = [emotions.get(emotion, 0) for emotions in data['facial_emotions']]
fig.add_trace(go.Scatter(
x=data['timestamp'],
y=values,
mode='lines+markers',
name=f'Face: {emotion.title()}',
line=dict(width=2)
))
# Plot voice emotions
if data['voice_emotions']:
for emotion in ['stressed', 'anxious', 'pain', 'calm']:
values = [emotions.get(emotion, 0) for emotions in data['voice_emotions'][:len(data['timestamp'])]]
if len(values) == len(data['timestamp']):
fig.add_trace(go.Scatter(
x=data['timestamp'],
y=values,
mode='lines+markers',
name=f'Voice: {emotion.title()}',
line=dict(dash='dash', width=2)
))
fig.update_layout(
title='Patient Emotion Timeline During Consultation',
xaxis_title='Time (seconds)',
yaxis_title='Emotion Intensity',
height=500,
hovermode='x unified'
)
return fig
def create_emotion_summary(data):
"""Create summary charts of detected emotions"""
if not data['facial_emotions'] and not data['voice_emotions']:
return go.Figure(), go.Figure()
# Facial emotion summary
face_fig = go.Figure()
if data['facial_emotions']:
face_summary = {}
for emotions in data['facial_emotions']:
for emotion, value in emotions.items():
face_summary[emotion] = face_summary.get(emotion, 0) + value
face_fig = px.pie(
values=list(face_summary.values()),
names=list(face_summary.keys()),
title='Facial Expression Summary'
)
# Voice emotion summary
voice_fig = go.Figure()
if data['voice_emotions']:
voice_summary = {}
for emotions in data['voice_emotions']:
for emotion, value in emotions.items():
voice_summary[emotion] = voice_summary.get(emotion, 0) + value
voice_fig = px.pie(
values=list(voice_summary.values()),
names=list(voice_summary.keys()),
title='Voice Emotion Summary'
)
return face_fig, voice_fig
def generate_recommendations(data):
"""Generate recommendations based on detected emotions"""
recommendations = []
alerts = data.get('alerts', [])
if alerts:
recommendations.append("⚠️ **ALERTS DETECTED:**")
for alert in alerts[:5]: # Limit to 5 alerts
recommendations.append(f"β€’ {alert}")
recommendations.append("")
# Analyze overall emotion patterns
high_stress_count = 0
pain_indicators = 0
confusion_signs = 0
for emotions in data.get('facial_emotions', []):
if emotions.get('sad', 0) > 0.3 or emotions.get('fear', 0) > 0.25:
high_stress_count += 1
for emotions in data.get('voice_emotions', []):
if emotions.get('pain', 0) > 0.3:
pain_indicators += 1
if emotions.get('confused', 0) > 0.3:
confusion_signs += 1
# Generate specific recommendations
if high_stress_count > len(data.get('facial_emotions', [])) * 0.3:
recommendations.append("🧘 **Stress Management:** Patient shows signs of elevated stress. Consider:")
recommendations.append(" β€’ Offering reassurance and clear explanations")
recommendations.append(" β€’ Allowing more time for questions")
recommendations.append(" β€’ Suggesting relaxation techniques")
recommendations.append("")
if pain_indicators > 0:
recommendations.append("🩺 **Pain Assessment:** Voice analysis suggests possible discomfort:")
recommendations.append(" β€’ Conduct thorough pain assessment")
recommendations.append(" β€’ Consider pain management options")
recommendations.append(" β€’ Monitor patient comfort throughout consultation")
recommendations.append("")
if confusion_signs > 0:
recommendations.append("πŸ’­ **Communication:** Signs of confusion detected:")
recommendations.append(" β€’ Use simpler language and medical terms")
recommendations.append(" β€’ Repeat important information")
recommendations.append(" β€’ Provide written summaries")
recommendations.append("")
if not recommendations:
recommendations.append("βœ… **Overall Assessment:** Patient appears comfortable and engaged.")
recommendations.append("Continue with current consultation approach.")
return "\n".join(recommendations)
def process_consultation(video_file, audio_file):
"""Main processing function"""
if video_file is None and audio_file is None:
return None, None, None, "Please upload video and/or audio files to analyze."
# Process the consultation data
data = analyzer.process_consultation_data(video_file, audio_file)
# Create visualizations
timeline_fig = create_emotion_timeline(data)
face_summary, voice_summary = create_emotion_summary(data)
# Generate recommendations
recommendations = generate_recommendations(data)
return timeline_fig, face_summary, voice_summary, recommendations
def real_time_analysis(audio):
"""Real-time audio emotion analysis"""
if audio is None:
return "No audio detected"
try:
# Process audio data
sample_rate, audio_data = audio
# Convert to float and normalize
if audio_data.dtype == np.int16:
audio_data = audio_data.astype(np.float32) / 32768.0
elif audio_data.dtype == np.int32:
audio_data = audio_data.astype(np.float32) / 2147483648.0
# Analyze emotions
emotions = analyzer.analyze_voice_emotion(audio_data, sample_rate)
# Format results
result = "**Real-time Voice Emotion Analysis:**\n\n"
for emotion, confidence in sorted(emotions.items(), key=lambda x: x[1], reverse=True):
percentage = confidence * 100
result += f"β€’ **{emotion.title()}**: {percentage:.1f}%\n"
# Add alerts if needed
if emotions.get('pain', 0) > 0.4:
result += "\n⚠️ **ALERT**: High pain level detected"
elif emotions.get('stressed', 0) > 0.5:
result += "\n⚠️ **ALERT**: High stress level detected"
return result
except Exception as e:
return f"Error processing audio: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Patient Emotion Analysis System", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸ₯ Patient Emotion Analysis System
This system analyzes patient facial expressions and voice tone during consultations to detect emotions
such as stress, anxiety, confusion, or pain, helping healthcare practitioners provide better care.
**Features:**
- Facial expression analysis from video recordings
- Voice emotion detection from audio
- Real-time emotion monitoring
- Clinical recommendations based on detected emotions
""")
with gr.Tabs():
# Consultation Analysis Tab
with gr.Tab("πŸ“Ή Consultation Analysis"):
gr.Markdown("### Upload consultation video and/or audio for comprehensive emotion analysis")
with gr.Row():
with gr.Column():
video_input = gr.File(
label="Upload Video File",
file_types=[".mp4", ".avi", ".mov", ".mkv"],
type="filepath"
)
audio_input = gr.File(
label="Upload Audio File",
file_types=[".wav", ".mp3", ".m4a", ".flac"],
type="filepath"
)
analyze_btn = gr.Button("πŸ” Analyze Consultation", variant="primary", size="lg")
with gr.Column():
recommendations_output = gr.Markdown(label="Clinical Recommendations")
with gr.Row():
timeline_plot = gr.Plot(label="Emotion Timeline")
with gr.Row():
with gr.Column():
face_summary_plot = gr.Plot(label="Facial Expression Summary")
with gr.Column():
voice_summary_plot = gr.Plot(label="Voice Emotion Summary")
analyze_btn.click(
fn=process_consultation,
inputs=[video_input, audio_input],
outputs=[timeline_plot, face_summary_plot, voice_summary_plot, recommendations_output]
)
# Real-time Monitoring Tab
with gr.Tab("🎀 Real-time Monitoring"):
gr.Markdown("### Real-time voice emotion analysis during consultation")
with gr.Row():
with gr.Column():
audio_realtime = gr.Audio(
sources=["microphone"],
type="numpy",
label="Real-time Audio Input"
)
with gr.Column():
realtime_output = gr.Markdown(label="Real-time Analysis Results")
audio_realtime.change(
fn=real_time_analysis,
inputs=[audio_realtime],
outputs=[realtime_output]
)
# Information Tab
with gr.Tab("ℹ️ System Information"):
gr.Markdown("""
### System Overview
This Patient Emotion Analysis System uses advanced AI models to analyze:
**Facial Expression Analysis:**
- Detects 7 basic emotions: neutral, happy, sad, angry, fear, disgust, surprise
- Uses computer vision techniques for face detection and emotion recognition
- Analyzes video frame-by-frame for temporal emotion patterns
**Voice Emotion Analysis:**
- Extracts audio features: MFCC, spectral centroid, zero-crossing rate
- Detects emotions: calm, stressed, anxious, confused, pain, frustrated
- Real-time analysis capability for live consultations
**Clinical Applications:**
- Helps practitioners identify patient distress early
- Provides objective emotion metrics
- Suggests intervention strategies
- Improves patient-practitioner communication
**Privacy & Ethics:**
- All processing is done locally
- No data is stored permanently
- Designed to assist, not replace clinical judgment
- Compliant with healthcare data protection standards
### Technical Implementation Notes:
**For Production Use:**
1. Replace mock emotion detection with actual pretrained models:
- FER-2013, AffectNet for facial emotions
- Audio emotion models (RAVDESS, IEMOCAP datasets)
2. Implement proper face detection (OpenCV, dlib, or MediaPipe)
3. Add real-time video processing capabilities
4. Integrate with hospital systems and EHR
5. Add user authentication and data encryption
6. Calibrate alert thresholds based on clinical validation
**Recommended Models:**
- **Facial**: FER+ model, OpenFace, or custom CNN trained on medical data
- **Voice**: Speech emotion recognition using LSTM/Transformer architectures
- **Integration**: Multi-modal fusion for improved accuracy
""")
if __name__ == "__main__":
demo.launch(share=True)