File size: 18,254 Bytes
d61cd9f
38fef5b
ef2be41
38fef5b
 
 
 
 
 
 
3d0e791
38fef5b
 
d61cd9f
38fef5b
 
 
 
d17fe0c
38fef5b
 
 
 
 
 
d17fe0c
38fef5b
 
 
 
 
 
 
d17fe0c
38fef5b
 
 
 
 
d17fe0c
 
38fef5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d17fe0c
d287980
38fef5b
 
 
 
 
 
 
 
d17fe0c
38fef5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d17fe0c
38fef5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d17fe0c
38fef5b
 
 
 
3d0e791
38fef5b
 
 
 
cf17ab8
38fef5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61cd9f
38fef5b
 
 
 
 
 
 
 
 
 
 
 
 
 
f36fc2f
38fef5b
 
 
 
 
 
 
 
 
 
 
 
 
f36fc2f
38fef5b
 
 
 
cf17ab8
d61cd9f
38fef5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3baa918
 
38fef5b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import gradio as gr
import cv2
import numpy as np
import librosa
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import warnings
warnings.filterwarnings('ignore')

# Mock emotion detection functions (replace with actual models in production)
class EmotionAnalyzer:
    def __init__(self):
        # In production, load actual pretrained models here
        self.face_emotions = ['neutral', 'happy', 'sad', 'angry', 'fear', 'disgust', 'surprise']
        self.voice_emotions = ['calm', 'stressed', 'anxious', 'confused', 'pain', 'frustrated']
        self.session_data = []
        
    def analyze_facial_expression(self, frame):
        """Simulate facial expression analysis"""
        # In production: use actual face detection + emotion recognition model
        # Example: face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
        
        # Mock analysis - replace with actual model inference
        emotions = {
            'neutral': np.random.uniform(0.1, 0.7),
            'happy': np.random.uniform(0.0, 0.3),
            'sad': np.random.uniform(0.0, 0.4),
            'angry': np.random.uniform(0.0, 0.2),
            'fear': np.random.uniform(0.0, 0.3),
            'disgust': np.random.uniform(0.0, 0.1),
            'surprise': np.random.uniform(0.0, 0.2)
        }
        
        # Normalize to sum to 1
        total = sum(emotions.values())
        emotions = {k: v/total for k, v in emotions.items()}
        
        return emotions
    
    def analyze_voice_emotion(self, audio_data, sample_rate):
        """Simulate voice emotion analysis"""
        if audio_data is None or len(audio_data) == 0:
            return {'calm': 1.0}
            
        # Extract audio features (these would be used with actual models)
        try:
            # Basic audio feature extraction
            mfcc = librosa.feature.mfcc(y=audio_data, sr=sample_rate, n_mfcc=13)
            spectral_centroid = librosa.feature.spectral_centroid(y=audio_data, sr=sample_rate)
            zero_crossing_rate = librosa.feature.zero_crossing_rate(audio_data)
            
            # Mock emotion prediction based on audio characteristics
            energy = np.mean(audio_data**2)
            pitch_var = np.var(spectral_centroid)
            
            # Simulate emotion detection based on audio features
            emotions = {
                'calm': max(0.1, 0.8 - energy * 10),
                'stressed': min(0.8, energy * 5 + pitch_var * 100),
                'anxious': min(0.7, pitch_var * 150),
                'confused': np.random.uniform(0.0, 0.3),
                'pain': min(0.6, energy * 8 if energy > 0.1 else 0.0),
                'frustrated': min(0.5, energy * 3 + pitch_var * 80)
            }
            
            # Normalize
            total = sum(emotions.values())
            emotions = {k: v/total for k, v in emotions.items()}
            
        except Exception as e:
            # Fallback if audio processing fails
            emotions = {'calm': 1.0}
            
        return emotions
    
    def process_consultation_data(self, video_file, audio_file):
        """Process video and audio files for emotion analysis"""
        results = {
            'timestamp': [],
            'facial_emotions': [],
            'voice_emotions': [],
            'alerts': []
        }
        
        # Process video file
        if video_file is not None:
            cap = cv2.VideoCapture(video_file)
            frame_count = 0
            
            while cap.read()[0] and frame_count < 100:  # Limit for demo
                ret, frame = cap.read()
                if not ret:
                    break
                    
                if frame_count % 30 == 0:  # Analyze every 30th frame
                    facial_emotions = self.analyze_facial_expression(frame)
                    timestamp = frame_count / 30  # Assuming 30 FPS
                    
                    results['timestamp'].append(timestamp)
                    results['facial_emotions'].append(facial_emotions)
                    
                    # Check for alerts
                    if facial_emotions.get('sad', 0) > 0.4 or facial_emotions.get('fear', 0) > 0.3:
                        results['alerts'].append(f"High stress/sadness detected at {timestamp:.1f}s")
                
                frame_count += 1
            
            cap.release()
        
        # Process audio file
        if audio_file is not None:
            try:
                audio_data, sample_rate = librosa.load(audio_file, duration=60)  # Limit for demo
                
                # Analyze audio in chunks
                chunk_duration = 3  # seconds
                chunk_samples = chunk_duration * sample_rate
                
                for i in range(0, len(audio_data), chunk_samples):
                    chunk = audio_data[i:i+chunk_samples]
                    if len(chunk) > sample_rate:  # Minimum 1 second
                        voice_emotions = self.analyze_voice_emotion(chunk, sample_rate)
                        timestamp = i / sample_rate
                        
                        if len(results['voice_emotions']) <= len(results['timestamp']):
                            results['voice_emotions'].append(voice_emotions)
                        
                        # Check for voice-based alerts
                        if voice_emotions.get('pain', 0) > 0.4 or voice_emotions.get('stressed', 0) > 0.5:
                            results['alerts'].append(f"Voice stress/pain detected at {timestamp:.1f}s")
                            
            except Exception as e:
                print(f"Audio processing error: {e}")
        
        return results

# Initialize analyzer
analyzer = EmotionAnalyzer()

def create_emotion_timeline(data):
    """Create timeline visualization of emotions"""
    if not data['timestamp']:
        return go.Figure()
    
    fig = go.Figure()
    
    # Plot facial emotions
    if data['facial_emotions']:
        for emotion in ['sad', 'fear', 'angry', 'neutral', 'happy']:
            values = [emotions.get(emotion, 0) for emotions in data['facial_emotions']]
            fig.add_trace(go.Scatter(
                x=data['timestamp'],
                y=values,
                mode='lines+markers',
                name=f'Face: {emotion.title()}',
                line=dict(width=2)
            ))
    
    # Plot voice emotions
    if data['voice_emotions']:
        for emotion in ['stressed', 'anxious', 'pain', 'calm']:
            values = [emotions.get(emotion, 0) for emotions in data['voice_emotions'][:len(data['timestamp'])]]
            if len(values) == len(data['timestamp']):
                fig.add_trace(go.Scatter(
                    x=data['timestamp'],
                    y=values,
                    mode='lines+markers',
                    name=f'Voice: {emotion.title()}',
                    line=dict(dash='dash', width=2)
                ))
    
    fig.update_layout(
        title='Patient Emotion Timeline During Consultation',
        xaxis_title='Time (seconds)',
        yaxis_title='Emotion Intensity',
        height=500,
        hovermode='x unified'
    )
    
    return fig

def create_emotion_summary(data):
    """Create summary charts of detected emotions"""
    if not data['facial_emotions'] and not data['voice_emotions']:
        return go.Figure(), go.Figure()
    
    # Facial emotion summary
    face_fig = go.Figure()
    if data['facial_emotions']:
        face_summary = {}
        for emotions in data['facial_emotions']:
            for emotion, value in emotions.items():
                face_summary[emotion] = face_summary.get(emotion, 0) + value
        
        face_fig = px.pie(
            values=list(face_summary.values()),
            names=list(face_summary.keys()),
            title='Facial Expression Summary'
        )
    
    # Voice emotion summary
    voice_fig = go.Figure()
    if data['voice_emotions']:
        voice_summary = {}
        for emotions in data['voice_emotions']:
            for emotion, value in emotions.items():
                voice_summary[emotion] = voice_summary.get(emotion, 0) + value
        
        voice_fig = px.pie(
            values=list(voice_summary.values()),
            names=list(voice_summary.keys()),
            title='Voice Emotion Summary'
        )
    
    return face_fig, voice_fig

def generate_recommendations(data):
    """Generate recommendations based on detected emotions"""
    recommendations = []
    alerts = data.get('alerts', [])
    
    if alerts:
        recommendations.append("⚠️ **ALERTS DETECTED:**")
        for alert in alerts[:5]:  # Limit to 5 alerts
            recommendations.append(f"• {alert}")
        recommendations.append("")
    
    # Analyze overall emotion patterns
    high_stress_count = 0
    pain_indicators = 0
    confusion_signs = 0
    
    for emotions in data.get('facial_emotions', []):
        if emotions.get('sad', 0) > 0.3 or emotions.get('fear', 0) > 0.25:
            high_stress_count += 1
    
    for emotions in data.get('voice_emotions', []):
        if emotions.get('pain', 0) > 0.3:
            pain_indicators += 1
        if emotions.get('confused', 0) > 0.3:
            confusion_signs += 1
    
    # Generate specific recommendations
    if high_stress_count > len(data.get('facial_emotions', [])) * 0.3:
        recommendations.append("🧘 **Stress Management:** Patient shows signs of elevated stress. Consider:")
        recommendations.append("  • Offering reassurance and clear explanations")
        recommendations.append("  • Allowing more time for questions")
        recommendations.append("  • Suggesting relaxation techniques")
        recommendations.append("")
    
    if pain_indicators > 0:
        recommendations.append("🩺 **Pain Assessment:** Voice analysis suggests possible discomfort:")
        recommendations.append("  • Conduct thorough pain assessment")
        recommendations.append("  • Consider pain management options")
        recommendations.append("  • Monitor patient comfort throughout consultation")
        recommendations.append("")
    
    if confusion_signs > 0:
        recommendations.append("💭 **Communication:** Signs of confusion detected:")
        recommendations.append("  • Use simpler language and medical terms")
        recommendations.append("  • Repeat important information")
        recommendations.append("  • Provide written summaries")
        recommendations.append("")
    
    if not recommendations:
        recommendations.append("✅ **Overall Assessment:** Patient appears comfortable and engaged.")
        recommendations.append("Continue with current consultation approach.")
    
    return "\n".join(recommendations)

def process_consultation(video_file, audio_file):
    """Main processing function"""
    if video_file is None and audio_file is None:
        return None, None, None, "Please upload video and/or audio files to analyze."
    
    # Process the consultation data
    data = analyzer.process_consultation_data(video_file, audio_file)
    
    # Create visualizations
    timeline_fig = create_emotion_timeline(data)
    face_summary, voice_summary = create_emotion_summary(data)
    
    # Generate recommendations
    recommendations = generate_recommendations(data)
    
    return timeline_fig, face_summary, voice_summary, recommendations

def real_time_analysis(audio):
    """Real-time audio emotion analysis"""
    if audio is None:
        return "No audio detected"
    
    try:
        # Process audio data
        sample_rate, audio_data = audio
        
        # Convert to float and normalize
        if audio_data.dtype == np.int16:
            audio_data = audio_data.astype(np.float32) / 32768.0
        elif audio_data.dtype == np.int32:
            audio_data = audio_data.astype(np.float32) / 2147483648.0
        
        # Analyze emotions
        emotions = analyzer.analyze_voice_emotion(audio_data, sample_rate)
        
        # Format results
        result = "**Real-time Voice Emotion Analysis:**\n\n"
        for emotion, confidence in sorted(emotions.items(), key=lambda x: x[1], reverse=True):
            percentage = confidence * 100
            result += f"• **{emotion.title()}**: {percentage:.1f}%\n"
        
        # Add alerts if needed
        if emotions.get('pain', 0) > 0.4:
            result += "\n⚠️ **ALERT**: High pain level detected"
        elif emotions.get('stressed', 0) > 0.5:
            result += "\n⚠️ **ALERT**: High stress level detected"
        
        return result
        
    except Exception as e:
        return f"Error processing audio: {str(e)}"

# Create Gradio interface
with gr.Blocks(title="Patient Emotion Analysis System", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🏥 Patient Emotion Analysis System
    
    This system analyzes patient facial expressions and voice tone during consultations to detect emotions 
    such as stress, anxiety, confusion, or pain, helping healthcare practitioners provide better care.
    
    **Features:**
    - Facial expression analysis from video recordings
    - Voice emotion detection from audio
    - Real-time emotion monitoring
    - Clinical recommendations based on detected emotions
    """)
    
    with gr.Tabs():
        # Consultation Analysis Tab
        with gr.Tab("📹 Consultation Analysis"):
            gr.Markdown("### Upload consultation video and/or audio for comprehensive emotion analysis")
            
            with gr.Row():
                with gr.Column():
                    video_input = gr.File(
                        label="Upload Video File",
                        file_types=[".mp4", ".avi", ".mov", ".mkv"],
                        type="filepath"
                    )
                    audio_input = gr.File(
                        label="Upload Audio File", 
                        file_types=[".wav", ".mp3", ".m4a", ".flac"],
                        type="filepath"
                    )
                    analyze_btn = gr.Button("🔍 Analyze Consultation", variant="primary", size="lg")
                
                with gr.Column():
                    recommendations_output = gr.Markdown(label="Clinical Recommendations")
            
            with gr.Row():
                timeline_plot = gr.Plot(label="Emotion Timeline")
            
            with gr.Row():
                with gr.Column():
                    face_summary_plot = gr.Plot(label="Facial Expression Summary")
                with gr.Column():
                    voice_summary_plot = gr.Plot(label="Voice Emotion Summary")
            
            analyze_btn.click(
                fn=process_consultation,
                inputs=[video_input, audio_input],
                outputs=[timeline_plot, face_summary_plot, voice_summary_plot, recommendations_output]
            )
        
        # Real-time Monitoring Tab
        with gr.Tab("🎤 Real-time Monitoring"):
            gr.Markdown("### Real-time voice emotion analysis during consultation")
            
            with gr.Row():
                with gr.Column():
                    audio_realtime = gr.Audio(
                        sources=["microphone"],
                        type="numpy",
                        label="Real-time Audio Input"
                    )
                    
                with gr.Column():
                    realtime_output = gr.Markdown(label="Real-time Analysis Results")
            
            audio_realtime.change(
                fn=real_time_analysis,
                inputs=[audio_realtime],
                outputs=[realtime_output]
            )
        
        # Information Tab
        with gr.Tab("ℹ️ System Information"):
            gr.Markdown("""
            ### System Overview
            
            This Patient Emotion Analysis System uses advanced AI models to analyze:
            
            **Facial Expression Analysis:**
            - Detects 7 basic emotions: neutral, happy, sad, angry, fear, disgust, surprise
            - Uses computer vision techniques for face detection and emotion recognition
            - Analyzes video frame-by-frame for temporal emotion patterns
            
            **Voice Emotion Analysis:**
            - Extracts audio features: MFCC, spectral centroid, zero-crossing rate
            - Detects emotions: calm, stressed, anxious, confused, pain, frustrated
            - Real-time analysis capability for live consultations
            
            **Clinical Applications:**
            - Helps practitioners identify patient distress early
            - Provides objective emotion metrics
            - Suggests intervention strategies
            - Improves patient-practitioner communication
            
            **Privacy & Ethics:**
            - All processing is done locally
            - No data is stored permanently
            - Designed to assist, not replace clinical judgment
            - Compliant with healthcare data protection standards
            
            ### Technical Implementation Notes:
            
            **For Production Use:**
            1. Replace mock emotion detection with actual pretrained models:
               - FER-2013, AffectNet for facial emotions
               - Audio emotion models (RAVDESS, IEMOCAP datasets)
            2. Implement proper face detection (OpenCV, dlib, or MediaPipe)
            3. Add real-time video processing capabilities
            4. Integrate with hospital systems and EHR
            5. Add user authentication and data encryption
            6. Calibrate alert thresholds based on clinical validation
            
            **Recommended Models:**
            - **Facial**: FER+ model, OpenFace, or custom CNN trained on medical data
            - **Voice**: Speech emotion recognition using LSTM/Transformer architectures
            - **Integration**: Multi-modal fusion for improved accuracy
            """)

if __name__ == "__main__":
    demo.launch(share=True)