change the model
Browse files
app.py
CHANGED
@@ -1,124 +1,495 @@
|
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
-
import pyttsx3
|
4 |
-
import onnxruntime as ort
|
5 |
import librosa
|
6 |
-
import
|
7 |
-
import
|
8 |
-
|
|
|
|
|
|
|
9 |
import time
|
10 |
-
import
|
11 |
-
|
12 |
-
|
13 |
-
import tempfile
|
14 |
-
|
15 |
-
# ------------------- Speech Emotion Recognition Model -------------------
|
16 |
-
class SpeechEmotionRecognizer:
|
17 |
-
def __init__(self, model_path):
|
18 |
-
self.model = ort.InferenceSession(model_path)
|
19 |
-
self.input_name = self.model.get_inputs()[0].name
|
20 |
-
self.labels = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
21 |
-
|
22 |
-
# Load or create scaler here (fit on training data offline, then load)
|
23 |
-
self.scaler = StandardScaler()
|
24 |
-
|
25 |
-
def extract_features(self, y, sr):
|
26 |
-
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)
|
27 |
-
mfcc_mean = np.mean(mfcc.T, axis=0)
|
28 |
-
# Normally, scaler should be pre-fitted, here we just scale manually to zero mean, unit var
|
29 |
-
mfcc_scaled = (mfcc_mean - np.mean(mfcc_mean)) / np.std(mfcc_mean)
|
30 |
-
return mfcc_scaled
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
self.
|
43 |
-
self.
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
return emotion
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
def
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
pass
|
116 |
|
117 |
-
|
118 |
-
|
|
|
|
|
119 |
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
|
|
123 |
if __name__ == "__main__":
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
|
|
|
|
4 |
import librosa
|
5 |
+
import pandas as pd
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
import plotly.express as px
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
import threading
|
10 |
+
import queue
|
11 |
import time
|
12 |
+
from collections import deque
|
13 |
+
import warnings
|
14 |
+
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Try to import transformers and torch, with fallbacks
|
17 |
+
try:
|
18 |
+
from transformers import pipeline
|
19 |
+
import torch
|
20 |
+
HF_AVAILABLE = True
|
21 |
+
except ImportError:
|
22 |
+
HF_AVAILABLE = False
|
23 |
+
print("Transformers not available - using mock emotion detection")
|
24 |
|
25 |
+
class EmotionRecognitionSystem:
|
26 |
+
def __init__(self):
|
27 |
+
self.emotion_history = deque(maxlen=100) # Store last 100 emotion readings
|
28 |
+
self.audio_queue = queue.Queue()
|
29 |
+
self.video_queue = queue.Queue()
|
30 |
+
|
31 |
+
# Initialize emotion detection models
|
32 |
+
self.setup_models()
|
33 |
+
|
34 |
+
# Emotion thresholds for alerts
|
35 |
+
self.alert_thresholds = {
|
36 |
+
'stress': 0.7,
|
37 |
+
'anxiety': 0.6,
|
38 |
+
'pain': 0.8,
|
39 |
+
'confusion': 0.5
|
40 |
+
}
|
41 |
+
|
42 |
+
def setup_models(self):
|
43 |
+
"""Initialize emotion recognition models"""
|
44 |
+
if HF_AVAILABLE:
|
45 |
+
try:
|
46 |
+
# Facial emotion recognition
|
47 |
+
self.face_emotion_pipeline = pipeline(
|
48 |
+
"image-classification",
|
49 |
+
model="j-hartmann/emotion-english-distilroberta-base",
|
50 |
+
device=0 if torch.cuda.is_available() else -1
|
51 |
+
)
|
52 |
+
|
53 |
+
# Audio emotion recognition
|
54 |
+
self.audio_emotion_pipeline = pipeline(
|
55 |
+
"audio-classification",
|
56 |
+
model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition",
|
57 |
+
device=0 if torch.cuda.is_available() else -1
|
58 |
+
)
|
59 |
+
self.models_loaded = True
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Error loading models: {e}")
|
62 |
+
self.models_loaded = False
|
63 |
+
else:
|
64 |
+
self.models_loaded = False
|
65 |
+
|
66 |
+
def detect_face_emotion(self, frame):
|
67 |
+
"""Detect emotions from facial expressions"""
|
68 |
+
if not self.models_loaded:
|
69 |
+
# Mock emotion detection for demo
|
70 |
+
emotions = ['neutral', 'happy', 'sad', 'angry', 'fear', 'surprise', 'disgust']
|
71 |
+
scores = np.random.dirichlet(np.ones(len(emotions)))
|
72 |
+
return dict(zip(emotions, scores))
|
73 |
+
|
74 |
+
try:
|
75 |
+
# Convert frame to RGB
|
76 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
77 |
+
|
78 |
+
# Use face emotion model
|
79 |
+
results = self.face_emotion_pipeline(rgb_frame)
|
80 |
+
|
81 |
+
# Convert to standardized format
|
82 |
+
emotion_scores = {}
|
83 |
+
for result in results:
|
84 |
+
emotion_scores[result['label'].lower()] = result['score']
|
85 |
+
|
86 |
+
return emotion_scores
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Face emotion detection error: {e}")
|
90 |
+
return {'neutral': 1.0}
|
91 |
+
|
92 |
+
def detect_voice_emotion(self, audio_data, sample_rate=16000):
|
93 |
+
"""Detect emotions from voice tone"""
|
94 |
+
if not self.models_loaded or audio_data is None:
|
95 |
+
# Mock emotion detection
|
96 |
+
emotions = ['neutral', 'happy', 'sad', 'angry', 'fear']
|
97 |
+
scores = np.random.dirichlet(np.ones(len(emotions)))
|
98 |
+
return dict(zip(emotions, scores))
|
99 |
+
|
100 |
+
try:
|
101 |
+
# Process audio with the model
|
102 |
+
results = self.audio_emotion_pipeline(audio_data)
|
103 |
+
|
104 |
+
emotion_scores = {}
|
105 |
+
for result in results:
|
106 |
+
emotion_scores[result['label'].lower()] = result['score']
|
107 |
+
|
108 |
+
return emotion_scores
|
109 |
+
|
110 |
+
except Exception as e:
|
111 |
+
print(f"Voice emotion detection error: {e}")
|
112 |
+
return {'neutral': 1.0}
|
113 |
+
|
114 |
+
def extract_audio_features(self, audio_data, sample_rate):
|
115 |
+
"""Extract audio features for emotion analysis"""
|
116 |
+
try:
|
117 |
+
# Extract basic audio features
|
118 |
+
mfccs = librosa.feature.mfcc(y=audio_data, sr=sample_rate, n_mfcc=13)
|
119 |
+
spectral_centroids = librosa.feature.spectral_centroid(y=audio_data, sr=sample_rate)
|
120 |
+
zero_crossing_rate = librosa.feature.zero_crossing_rate(audio_data)
|
121 |
+
spectral_rolloff = librosa.feature.spectral_rolloff(y=audio_data, sr=sample_rate)
|
122 |
+
|
123 |
+
features = {
|
124 |
+
'mfcc_mean': np.mean(mfccs),
|
125 |
+
'mfcc_std': np.std(mfccs),
|
126 |
+
'spectral_centroid_mean': np.mean(spectral_centroids),
|
127 |
+
'zcr_mean': np.mean(zero_crossing_rate),
|
128 |
+
'spectral_rolloff_mean': np.mean(spectral_rolloff)
|
129 |
+
}
|
130 |
+
|
131 |
+
return features
|
132 |
+
except Exception as e:
|
133 |
+
print(f"Audio feature extraction error: {e}")
|
134 |
+
return {}
|
135 |
+
|
136 |
+
def combine_emotions(self, face_emotions, voice_emotions, weights=(0.6, 0.4)):
|
137 |
+
"""Combine facial and voice emotion predictions"""
|
138 |
+
combined = {}
|
139 |
+
all_emotions = set(face_emotions.keys()) | set(voice_emotions.keys())
|
140 |
+
|
141 |
+
for emotion in all_emotions:
|
142 |
+
face_score = face_emotions.get(emotion, 0)
|
143 |
+
voice_score = voice_emotions.get(emotion, 0)
|
144 |
+
combined[emotion] = weights[0] * face_score + weights[1] * voice_score
|
145 |
+
|
146 |
+
return combined
|
147 |
+
|
148 |
+
def map_to_clinical_emotions(self, emotions):
|
149 |
+
"""Map detected emotions to clinical categories"""
|
150 |
+
clinical_mapping = {
|
151 |
+
'stress': emotions.get('angry', 0) * 0.3 + emotions.get('fear', 0) * 0.4 + emotions.get('disgust', 0) * 0.3,
|
152 |
+
'anxiety': emotions.get('fear', 0) * 0.6 + emotions.get('surprise', 0) * 0.2 + emotions.get('sad', 0) * 0.2,
|
153 |
+
'pain': emotions.get('angry', 0) * 0.4 + emotions.get('disgust', 0) * 0.3 + emotions.get('sad', 0) * 0.3,
|
154 |
+
'confusion': emotions.get('surprise', 0) * 0.5 + emotions.get('neutral', 0) * 0.3 + emotions.get('fear', 0) * 0.2,
|
155 |
+
'comfort': emotions.get('happy', 0) * 0.7 + emotions.get('neutral', 0) * 0.3
|
156 |
+
}
|
157 |
+
|
158 |
+
return clinical_mapping
|
159 |
+
|
160 |
+
def generate_alerts(self, clinical_emotions):
|
161 |
+
"""Generate alerts based on emotion thresholds"""
|
162 |
+
alerts = []
|
163 |
+
suggestions = []
|
164 |
+
|
165 |
+
for emotion, score in clinical_emotions.items():
|
166 |
+
if emotion in self.alert_thresholds and score > self.alert_thresholds[emotion]:
|
167 |
+
alerts.append(f"β οΈ High {emotion} detected ({score:.2f})")
|
168 |
+
|
169 |
+
# Add specific suggestions
|
170 |
+
if emotion == 'stress':
|
171 |
+
suggestions.append("Consider: Take a moment to slow down, use calming voice tone")
|
172 |
+
elif emotion == 'anxiety':
|
173 |
+
suggestions.append("Consider: Provide reassurance, explain procedures clearly")
|
174 |
+
elif emotion == 'pain':
|
175 |
+
suggestions.append("Consider: Assess pain level, offer comfort measures")
|
176 |
+
elif emotion == 'confusion':
|
177 |
+
suggestions.append("Consider: Simplify explanations, check understanding")
|
178 |
+
|
179 |
+
return alerts, suggestions
|
180 |
+
|
181 |
+
def process_frame(self, frame, audio_data=None, sample_rate=16000):
|
182 |
+
"""Process a single frame and audio data"""
|
183 |
+
timestamp = datetime.now()
|
184 |
+
|
185 |
+
# Detect emotions
|
186 |
+
face_emotions = self.detect_face_emotion(frame)
|
187 |
+
voice_emotions = self.detect_voice_emotion(audio_data, sample_rate) if audio_data is not None else {}
|
188 |
+
|
189 |
+
# Combine emotions
|
190 |
+
if voice_emotions:
|
191 |
+
combined_emotions = self.combine_emotions(face_emotions, voice_emotions)
|
192 |
+
else:
|
193 |
+
combined_emotions = face_emotions
|
194 |
+
|
195 |
+
# Map to clinical categories
|
196 |
+
clinical_emotions = self.map_to_clinical_emotions(combined_emotions)
|
197 |
+
|
198 |
+
# Generate alerts
|
199 |
+
alerts, suggestions = self.generate_alerts(clinical_emotions)
|
200 |
+
|
201 |
+
# Store in history
|
202 |
+
emotion_record = {
|
203 |
+
'timestamp': timestamp,
|
204 |
+
'face_emotions': face_emotions,
|
205 |
+
'voice_emotions': voice_emotions,
|
206 |
+
'clinical_emotions': clinical_emotions,
|
207 |
+
'alerts': alerts,
|
208 |
+
'suggestions': suggestions
|
209 |
+
}
|
210 |
+
|
211 |
+
self.emotion_history.append(emotion_record)
|
212 |
+
|
213 |
+
return emotion_record
|
214 |
|
215 |
+
# Initialize the emotion recognition system
|
216 |
+
emotion_system = EmotionRecognitionSystem()
|
|
|
217 |
|
218 |
+
def process_video_audio(video_frame, audio_data):
|
219 |
+
"""Process video frame and audio data"""
|
220 |
+
if video_frame is None:
|
221 |
+
return None, "No video input", "", ""
|
222 |
+
|
223 |
+
# Process the frame
|
224 |
+
sample_rate = 16000
|
225 |
+
if audio_data is not None:
|
226 |
+
audio_array, sr = audio_data
|
227 |
+
if sr != sample_rate:
|
228 |
+
audio_array = librosa.resample(audio_array, orig_sr=sr, target_sr=sample_rate)
|
229 |
+
else:
|
230 |
+
audio_array = None
|
231 |
+
|
232 |
+
# Get emotion analysis
|
233 |
+
emotion_record = emotion_system.process_frame(video_frame, audio_array, sample_rate)
|
234 |
+
|
235 |
+
# Create visualization
|
236 |
+
annotated_frame = create_emotion_overlay(video_frame, emotion_record)
|
237 |
+
|
238 |
+
# Format results
|
239 |
+
clinical_text = format_clinical_emotions(emotion_record['clinical_emotions'])
|
240 |
+
alerts_text = "\n".join(emotion_record['alerts']) if emotion_record['alerts'] else "No alerts"
|
241 |
+
suggestions_text = "\n".join(emotion_record['suggestions']) if emotion_record['suggestions'] else "No suggestions"
|
242 |
+
|
243 |
+
return annotated_frame, clinical_text, alerts_text, suggestions_text
|
244 |
|
245 |
+
def create_emotion_overlay(frame, emotion_record):
|
246 |
+
"""Add emotion information overlay to video frame"""
|
247 |
+
annotated_frame = frame.copy()
|
248 |
+
|
249 |
+
# Get top emotion
|
250 |
+
clinical_emotions = emotion_record['clinical_emotions']
|
251 |
+
top_emotion = max(clinical_emotions.items(), key=lambda x: x[1])
|
252 |
+
|
253 |
+
# Add text overlay
|
254 |
+
cv2.putText(annotated_frame, f"Primary: {top_emotion[0]} ({top_emotion[1]:.2f})",
|
255 |
+
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
|
256 |
+
|
257 |
+
# Add alert indicator
|
258 |
+
if emotion_record['alerts']:
|
259 |
+
cv2.putText(annotated_frame, "ALERT!", (10, 60),
|
260 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
|
261 |
+
|
262 |
+
return annotated_frame
|
263 |
|
264 |
+
def format_clinical_emotions(clinical_emotions):
|
265 |
+
"""Format clinical emotions for display"""
|
266 |
+
formatted = []
|
267 |
+
for emotion, score in clinical_emotions.items():
|
268 |
+
bar = "β" * int(score * 10)
|
269 |
+
formatted.append(f"{emotion.capitalize()}: {bar} {score:.3f}")
|
270 |
+
return "\n".join(formatted)
|
271 |
|
272 |
+
def create_emotion_timeline():
|
273 |
+
"""Create emotion timeline chart"""
|
274 |
+
if not emotion_system.emotion_history:
|
275 |
+
return create_empty_chart()
|
276 |
|
277 |
+
# Extract data for plotting
|
278 |
+
timestamps = [record['timestamp'] for record in emotion_system.emotion_history]
|
279 |
+
|
280 |
+
fig = go.Figure()
|
281 |
+
|
282 |
+
# Add traces for each clinical emotion
|
283 |
+
clinical_emotions = ['stress', 'anxiety', 'pain', 'confusion', 'comfort']
|
284 |
+
colors = ['red', 'orange', 'purple', 'brown', 'green']
|
285 |
+
|
286 |
+
for emotion, color in zip(clinical_emotions, colors):
|
287 |
+
values = [record['clinical_emotions'].get(emotion, 0) for record in emotion_system.emotion_history]
|
288 |
+
fig.add_trace(go.Scatter(
|
289 |
+
x=timestamps,
|
290 |
+
y=values,
|
291 |
+
mode='lines+markers',
|
292 |
+
name=emotion.capitalize(),
|
293 |
+
line=dict(color=color, width=2),
|
294 |
+
marker=dict(size=4)
|
295 |
+
))
|
296 |
+
|
297 |
+
fig.update_layout(
|
298 |
+
title="Patient Emotion Timeline",
|
299 |
+
xaxis_title="Time",
|
300 |
+
yaxis_title="Emotion Intensity",
|
301 |
+
height=400,
|
302 |
+
showlegend=True,
|
303 |
+
template="plotly_white"
|
304 |
+
)
|
305 |
+
|
306 |
+
return fig
|
307 |
|
308 |
+
def create_empty_chart():
|
309 |
+
"""Create empty chart when no data available"""
|
310 |
+
fig = go.Figure()
|
311 |
+
fig.add_annotation(
|
312 |
+
text="No emotion data available yet",
|
313 |
+
xref="paper", yref="paper",
|
314 |
+
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
315 |
+
showarrow=False, font=dict(size=16)
|
316 |
+
)
|
317 |
+
fig.update_layout(
|
318 |
+
title="Patient Emotion Timeline",
|
319 |
+
height=400,
|
320 |
+
template="plotly_white"
|
321 |
+
)
|
322 |
+
return fig
|
323 |
|
324 |
+
def get_session_summary():
|
325 |
+
"""Generate session summary"""
|
326 |
+
if not emotion_system.emotion_history:
|
327 |
+
return "No session data available"
|
328 |
+
|
329 |
+
# Calculate averages
|
330 |
+
avg_emotions = {}
|
331 |
+
total_alerts = 0
|
332 |
+
|
333 |
+
for emotion in ['stress', 'anxiety', 'pain', 'confusion', 'comfort']:
|
334 |
+
values = [record['clinical_emotions'].get(emotion, 0) for record in emotion_system.emotion_history]
|
335 |
+
avg_emotions[emotion] = np.mean(values) if values else 0
|
336 |
+
|
337 |
+
total_alerts = sum(len(record['alerts']) for record in emotion_system.emotion_history)
|
338 |
+
|
339 |
+
# Format summary
|
340 |
+
summary = f"""
|
341 |
+
Session Summary:
|
342 |
+
- Duration: {len(emotion_system.emotion_history)} readings
|
343 |
+
- Average Stress Level: {avg_emotions['stress']:.3f}
|
344 |
+
- Average Anxiety Level: {avg_emotions['anxiety']:.3f}
|
345 |
+
- Average Pain Level: {avg_emotions['pain']:.3f}
|
346 |
+
- Average Confusion Level: {avg_emotions['confusion']:.3f}
|
347 |
+
- Average Comfort Level: {avg_emotions['comfort']:.3f}
|
348 |
+
- Total Alerts: {total_alerts}
|
349 |
|
350 |
+
Recommendations:
|
351 |
+
- Monitor stress levels during consultation
|
352 |
+
- Ensure patient understanding and comfort
|
353 |
+
- Address any recurring high emotion levels
|
354 |
+
"""
|
355 |
+
|
356 |
+
return summary
|
|
|
357 |
|
358 |
+
def clear_session():
|
359 |
+
"""Clear session data"""
|
360 |
+
emotion_system.emotion_history.clear()
|
361 |
+
return "Session data cleared", create_empty_chart(), ""
|
362 |
|
363 |
+
# Create Gradio interface
|
364 |
+
def create_interface():
|
365 |
+
with gr.Blocks(title="Patient Emotion Recognition System", theme=gr.themes.Soft()) as demo:
|
366 |
+
gr.Markdown("""
|
367 |
+
# π₯ Real-Time Patient Emotion Recognition System
|
368 |
+
|
369 |
+
This system analyzes patient facial expressions and voice tone during consultations to detect emotions such as stress, anxiety, confusion, or pain.
|
370 |
+
""")
|
371 |
+
|
372 |
+
with gr.Row():
|
373 |
+
with gr.Column(scale=2):
|
374 |
+
gr.Markdown("### πΉ Live Analysis")
|
375 |
+
|
376 |
+
# Video input
|
377 |
+
video_input = gr.Video(
|
378 |
+
label="Video Feed",
|
379 |
+
sources=["webcam"],
|
380 |
+
streaming=True
|
381 |
+
)
|
382 |
+
|
383 |
+
# Audio input
|
384 |
+
audio_input = gr.Audio(
|
385 |
+
label="Audio Input",
|
386 |
+
sources=["microphone"],
|
387 |
+
type="numpy",
|
388 |
+
streaming=True
|
389 |
+
)
|
390 |
+
|
391 |
+
# Process button
|
392 |
+
process_btn = gr.Button("π Process Current Frame", variant="primary")
|
393 |
+
|
394 |
+
with gr.Column(scale=2):
|
395 |
+
gr.Markdown("### π Real-Time Results")
|
396 |
+
|
397 |
+
# Annotated video output
|
398 |
+
video_output = gr.Image(
|
399 |
+
label="Emotion Analysis",
|
400 |
+
type="numpy"
|
401 |
+
)
|
402 |
+
|
403 |
+
# Clinical emotions display
|
404 |
+
clinical_output = gr.Textbox(
|
405 |
+
label="Clinical Emotion Levels",
|
406 |
+
lines=6,
|
407 |
+
interactive=False
|
408 |
+
)
|
409 |
+
|
410 |
+
with gr.Row():
|
411 |
+
with gr.Column():
|
412 |
+
gr.Markdown("### β οΈ Alerts")
|
413 |
+
alerts_output = gr.Textbox(
|
414 |
+
label="Current Alerts",
|
415 |
+
lines=3,
|
416 |
+
interactive=False
|
417 |
+
)
|
418 |
+
|
419 |
+
with gr.Column():
|
420 |
+
gr.Markdown("### π‘ Suggestions")
|
421 |
+
suggestions_output = gr.Textbox(
|
422 |
+
label="Practitioner Suggestions",
|
423 |
+
lines=3,
|
424 |
+
interactive=False
|
425 |
+
)
|
426 |
+
|
427 |
+
with gr.Row():
|
428 |
+
gr.Markdown("### π Emotion Timeline")
|
429 |
+
timeline_plot = gr.Plot(label="Emotion Timeline")
|
430 |
+
|
431 |
+
with gr.Row():
|
432 |
+
with gr.Column():
|
433 |
+
gr.Markdown("### π Session Summary")
|
434 |
+
summary_output = gr.Textbox(
|
435 |
+
label="Session Summary",
|
436 |
+
lines=12,
|
437 |
+
interactive=False
|
438 |
+
)
|
439 |
+
|
440 |
+
with gr.Row():
|
441 |
+
update_summary_btn = gr.Button("π Update Summary")
|
442 |
+
clear_btn = gr.Button("ποΈ Clear Session", variant="secondary")
|
443 |
+
update_timeline_btn = gr.Button("π Update Timeline")
|
444 |
+
|
445 |
+
# Event handlers
|
446 |
+
process_btn.click(
|
447 |
+
fn=process_video_audio,
|
448 |
+
inputs=[video_input, audio_input],
|
449 |
+
outputs=[video_output, clinical_output, alerts_output, suggestions_output]
|
450 |
+
)
|
451 |
+
|
452 |
+
update_timeline_btn.click(
|
453 |
+
fn=create_emotion_timeline,
|
454 |
+
outputs=timeline_plot
|
455 |
+
)
|
456 |
+
|
457 |
+
update_summary_btn.click(
|
458 |
+
fn=get_session_summary,
|
459 |
+
outputs=summary_output
|
460 |
+
)
|
461 |
+
|
462 |
+
clear_btn.click(
|
463 |
+
fn=clear_session,
|
464 |
+
outputs=[summary_output, timeline_plot, clinical_output]
|
465 |
+
)
|
466 |
+
|
467 |
+
# Auto-update timeline every few seconds
|
468 |
+
demo.load(fn=create_emotion_timeline, outputs=timeline_plot)
|
469 |
+
|
470 |
+
gr.Markdown("""
|
471 |
+
### π Usage Instructions:
|
472 |
+
1. **Enable camera and microphone** access when prompted
|
473 |
+
2. **Click "Process Current Frame"** to analyze emotions in real-time
|
474 |
+
3. **Monitor the timeline** to track emotion changes over time
|
475 |
+
4. **Review alerts and suggestions** for patient care recommendations
|
476 |
+
5. **Use session summary** for consultation documentation
|
477 |
+
|
478 |
+
### π§ Technical Notes:
|
479 |
+
- System uses pre-trained emotion recognition models
|
480 |
+
- Combines facial expression and voice tone analysis
|
481 |
+
- Provides clinical emotion mapping (stress, anxiety, pain, confusion)
|
482 |
+
- Generates real-time alerts and suggestions for practitioners
|
483 |
+
""")
|
484 |
+
|
485 |
+
return demo
|
486 |
|
487 |
+
# Launch the application
|
488 |
if __name__ == "__main__":
|
489 |
+
demo = create_interface()
|
490 |
+
demo.launch(
|
491 |
+
share=True,
|
492 |
+
server_name="0.0.0.0",
|
493 |
+
server_port=7860,
|
494 |
+
show_error=True
|
495 |
+
)
|