Spaces:
Sleeping
Sleeping
File size: 11,843 Bytes
24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea 24c8903 b5583ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import gradio as gr
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from deepface import DeepFace
import os
import tempfile
from PIL import Image
import io
import base64
class EmotionDetector:
def __init__(self):
self.emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
def detect_emotions_image(self, image):
"""Detect emotions in a single image"""
try:
if image is None:
return None, "No image provided"
# Convert PIL Image to numpy array if needed
if isinstance(image, Image.Image):
image = np.array(image)
# Convert RGB to BGR for OpenCV
if len(image.shape) == 3 and image.shape[2] == 3:
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
else:
image_bgr = image
# Save temporary image for DeepFace
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as tmp_file:
cv2.imwrite(tmp_file.name, image_bgr)
temp_path = tmp_file.name
try:
# Analyze emotions using DeepFace
result = DeepFace.analyze(
img_path=temp_path,
actions=['emotion'],
enforce_detection=False,
detector_backend='opencv'
)
# Handle both single face and multiple faces results
if isinstance(result, list):
emotions_data = result[0]['emotion']
else:
emotions_data = result['emotion']
# Create emotion chart
emotion_df = pd.DataFrame(list(emotions_data.items()),
columns=['Emotion', 'Confidence'])
emotion_df = emotion_df.sort_values('Confidence', ascending=True)
# Create matplotlib plot
plt.figure(figsize=(10, 6))
bars = plt.barh(emotion_df['Emotion'], emotion_df['Confidence'])
plt.xlabel('Confidence (%)')
plt.title('Emotion Detection Results')
plt.grid(axis='x', alpha=0.3)
# Color bars based on emotion
colors = {
'happy': '#FFD700',
'sad': '#4169E1',
'angry': '#DC143C',
'fear': '#800080',
'surprise': '#FF8C00',
'disgust': '#228B22',
'neutral': '#708090'
}
for bar, emotion in zip(bars, emotion_df['Emotion']):
bar.set_color(colors.get(emotion, '#708090'))
plt.tight_layout()
# Save plot to bytes
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png', dpi=150, bbox_inches='tight')
img_buffer.seek(0)
plt.close()
# Convert to PIL Image
chart_image = Image.open(img_buffer)
# Get dominant emotion
dominant_emotion = max(emotions_data, key=emotions_data.get)
confidence = emotions_data[dominant_emotion]
result_text = f"**Dominant Emotion:** {dominant_emotion.title()}\n"
result_text += f"**Confidence:** {confidence:.1f}%\n\n"
result_text += "**All Emotions:**\n"
for emotion, conf in sorted(emotions_data.items(), key=lambda x: x[1], reverse=True):
result_text += f"β’ {emotion.title()}: {conf:.1f}%\n"
return chart_image, result_text
finally:
# Clean up temporary file
if os.path.exists(temp_path):
os.unlink(temp_path)
except Exception as e:
error_msg = f"Error analyzing image: {str(e)}"
print(error_msg) # For debugging
return None, error_msg
def detect_emotions_video(self, video_path, sample_rate=30):
"""Detect emotions in video by sampling frames"""
try:
if video_path is None:
return None, "No video provided"
cap = cv2.VideoCapture(video_path)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
if frame_count == 0:
return None, "Invalid video file"
# Sample frames every 'sample_rate' frames
frame_indices = range(0, frame_count, sample_rate)
emotions_over_time = []
for frame_idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)
ret, frame = cap.read()
if not ret:
continue
try:
# Save frame temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as tmp_file:
cv2.imwrite(tmp_file.name, frame)
temp_path = tmp_file.name
# Analyze frame
result = DeepFace.analyze(
img_path=temp_path,
actions=['emotion'],
enforce_detection=False,
detector_backend='opencv'
)
if isinstance(result, list):
emotions_data = result[0]['emotion']
else:
emotions_data = result['emotion']
# Add timestamp
timestamp = frame_idx / fps
emotions_data['timestamp'] = timestamp
emotions_over_time.append(emotions_data)
# Clean up
os.unlink(temp_path)
except Exception as e:
print(f"Error processing frame {frame_idx}: {e}")
continue
cap.release()
if not emotions_over_time:
return None, "No emotions detected in video"
# Create DataFrame for plotting
df = pd.DataFrame(emotions_over_time)
# Plot emotions over time
plt.figure(figsize=(12, 8))
for emotion in self.emotions:
if emotion in df.columns:
plt.plot(df['timestamp'], df[emotion], label=emotion.title(), linewidth=2)
plt.xlabel('Time (seconds)')
plt.ylabel('Confidence (%)')
plt.title('Emotions Over Time')
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.grid(True, alpha=0.3)
plt.tight_layout()
# Save plot
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png', dpi=150, bbox_inches='tight')
img_buffer.seek(0)
plt.close()
chart_image = Image.open(img_buffer)
# Calculate average emotions
avg_emotions = df[self.emotions].mean().sort_values(ascending=False)
result_text = f"**Video Analysis Complete**\n"
result_text += f"**Frames Analyzed:** {len(emotions_over_time)}\n"
result_text += f"**Duration:** {df['timestamp'].max():.1f} seconds\n\n"
result_text += "**Average Emotions:**\n"
for emotion, confidence in avg_emotions.items():
result_text += f"β’ {emotion.title()}: {confidence:.1f}%\n"
return chart_image, result_text
except Exception as e:
return None, f"Error processing video: {str(e)}"
# Initialize detector
detector = EmotionDetector()
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Emotion Detection App", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# π Emotion Detection App
Upload an image or video to detect emotions using AI. This app uses DeepFace for accurate emotion recognition.
**Supported emotions:** Happy, Sad, Angry, Fear, Surprise, Disgust, Neutral
"""
)
with gr.Tabs():
# Image Analysis Tab
with gr.Tab("πΈ Image Analysis"):
with gr.Row():
with gr.Column():
image_input = gr.Image(
label="Upload Image",
type="pil"
)
image_button = gr.Button("Analyze Emotions", variant="primary")
with gr.Column():
image_chart = gr.Image(label="Emotion Chart")
image_results = gr.Markdown(label="Results")
image_button.click(
fn=detector.detect_emotions_image,
inputs=[image_input],
outputs=[image_chart, image_results]
)
# Video Analysis Tab
with gr.Tab("π₯ Video Analysis"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Video")
with gr.Row():
sample_rate = gr.Slider(
minimum=10,
maximum=60,
value=30,
step=5,
label="Frame Sampling Rate"
)
video_button = gr.Button("Analyze Video", variant="primary")
with gr.Column():
video_chart = gr.Image(label="Emotions Over Time")
video_results = gr.Markdown(label="Results")
video_button.click(
fn=detector.detect_emotions_video,
inputs=[video_input, sample_rate],
outputs=[video_chart, video_results]
)
# Examples
gr.Markdown("### π Instructions")
gr.Markdown(
"""
**For Images:**
- Upload any image with visible faces
- The app will detect and analyze emotions
- Results show confidence percentages for each emotion
**For Videos:**
- Upload video files (MP4, AVI, MOV, etc.)
- Adjust frame sampling rate to balance speed vs accuracy
- Lower values = more frames analyzed = more accurate but slower
- Higher values = fewer frames analyzed = faster but less detailed
**Tips:**
- Ensure faces are clearly visible and well-lit
- The app works best with front-facing faces
- Multiple faces in one image/video are supported
"""
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch() |