chatbot / app.py
yxmauw's picture
Update app.py
81f5fb5 verified
raw
history blame
3.92 kB
import gradio as gr
from gpt4all import GPT4All
from urllib.request import urlopen
import json
import time
url = "https://raw.githubusercontent.com/nomic-ai/gpt4all/main/gpt4all-chat/metadata/models3.json"
response = urlopen(url)
data_json = json.loads(response.read())
def model_choices():
model_list = [data_json[i]['filename'] for i in range(len(data_json))]
return model_list
model_description = {model['filename']: model['description'] for model in data_json}
def llm_intro(selected_model):
return model_description.get(selected_model, "No description available for this model selection.")
model_cache = {} # Global cache
def load_model(model_name):
"""
This function checks the cache before loading a model.
If the model is cached, it returns the cached version.
Otherwise, it loads the model, caches it, and then returns it.
"""
if model_name not in model_cache:
model = GPT4All(model_name)
model_cache[model_name] = model
return model_cache[model_name]
def generate_text(input_text, selected_model):
"""
Generate text using the selected model.
This function now uses the caching mechanism to load models.
"""
model = load_model_with_cache(selected_model)
output = model.generate(input_text, max_tokens=100)
return output
# with gr.Blocks() as demo:
# gr.Markdown("## GPT4All Text Generation Experiment")
# with gr.Row():
# model_selection = gr.Dropdown(choices=model_choices(),
# multiselect=False,
# label="LLMs to choose from",
# type="value",
# value="orca-mini-3b-gguf2-q4_0.gguf")
# explanation = gr.Textbox(label="Model Description", lines=3, interactive=False, value=llm_intro("orca-mini-3b-gguf2-q4_0.gguf"))
# # Link the dropdown with the textbox to update the description based on the selected model
# model_selection.change(fn=llm_intro, inputs=model_selection, outputs=explanation)
# chatbot = gr.Chatbot()
# input_text = gr.Textbox(lines=3, label="Press shift+Enter to submit")
# # output_text = gr.Textbox(lines=10, label="Generated Text")
# clear = gr.ClearButton([input_text, chatbot])
# Define the chatbot function
def generate_response(model_name, message, chat_history):
model = load_model(model_name)
chat_history = []
if len(chat_history) > 0:
past_chat = ", ".join(chat_history)
input_text = past_chat + " " + message
else:
input_text = message
response = model.generate(input_text, max_tokens=100)
chat_history.append((input_text, response))
return chat_history, response
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# GPT4All Chatbot")
with gr.Row():
with gr.Column(scale=1):
model_dropdown = gr.Dropdown(
choices=model_choices(),
multiselect=False,
type="value",
value="orca-mini-3b-gguf2-q4_0.gguf",
label="LLMs to choose from"
)
explanation = gr.Textbox(label="Model Description", lines=3, interactive=False, value=llm_intro("orca-mini-3b-gguf2-q4_0.gguf"))
# Link the dropdown with the textbox to update the description based on the selected model
model_dropdown.change(fn=llm_intro, inputs=model_dropdown, outputs=explanation)
with gr.Column(scale=4):
chatbot = gr.Chatbot(label="Conversation", value=[(None, "How may I help you today?")])
message = gr.Textbox(label="Message")
state = gr.State()
message.submit(generate_response, inputs=[model_dropdown, message, state], outputs=[chatbot, state])
# Launch the Gradio app
demo.launch()