Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,237 Bytes
1b38abc 51a1e24 acea92d 1b38abc 51a1e24 22e57cc acea92d 51a1e24 22e57cc 1b38abc 22e57cc 51a1e24 c239fc5 acea92d 51a1e24 c239fc5 2111fe7 51a1e24 9332ef4 51a1e24 cf8719a bc75f8a 51a1e24 a79e9c8 51a1e24 c239fc5 51a1e24 acea92d 51a1e24 c239fc5 51a1e24 acea92d 51a1e24 c239fc5 51a1e24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
import torch
import math
from optimization import optimize_pipeline_
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the model pipeline
# scheduler config needed for the LoRA
# From https://github.com/ModelTC/Qwen-Image-Lightning/blob/342260e8f5468d2f24d084ce04f55e101007118b/generate_with_diffusers.py#L82C9-L97C10
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3), # We use shift=3 in distillation
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3), # We use shift=3 in distillation
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None, # set shift_terminal to None
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=scheduler, torch_dtype=dtype).to(device)
# lora loading
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.0.safetensors", adapter_name="lightx2v"
)
pipe.set_adapters(["lightx2v"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=1., components=["transformer"])
pipe.unload_lora_weights()
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt='prompt')
# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max
# --- Main Inference Function (with hardcoded negative prompt) ---
@spaces.GPU(duration=120)
def infer(
image,
prompt,
seed=42,
randomize_seed=False,
guidance_scale=4.0,
true_guidance_scale=1.0,
num_inference_steps=8,
progress=gr.Progress(track_tqdm=True),
):
"""
Generates an image using the local Qwen-Image diffusers pipeline.
"""
# Hardcode the negative prompt as requested
negative_prompt = "text, watermark, copyright, blurry, low resolution"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Set up the generator for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
print(f"Calling pipeline with prompt: '{prompt}'")
print(f"Negative Prompt: '{negative_prompt}'")
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {guidance_scale}")
# Generate the image
image = pipe(
image,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
guidance_scale=guidance_scale
).images[0]
return image, seed
# --- Examples and UI Layout ---
examples = []
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
#edit_text{margin-top: -62px !important}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="Qwen-Image Logo" width="400" style="display: block; margin: 0 auto;">')
gr.HTML('<h1 style="text-align: center;margin-left: 80px;color: #5b47d1;font-style: italic;">Edit</h1>', elem_id="edit_text")
gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", show_label=False, type="pil")
prompt = gr.Text(
label="Prompt",
show_label=False,
placeholder="describe the edit instruction",
container=False,
)
run_button = gr.Button("Edit!", variant="primary")
result = gr.Image(label="Result", show_label=False, type="pil")
with gr.Accordion("Advanced Settings", open=False):
# Negative prompt UI element is removed here
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Distilled guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=1.0,
)
true_guidance_scale = gr.Slider(
label="True guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=8,
)
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_image,
prompt,
# negative_prompt is no longer an input from the UI
seed,
randomize_seed,
guidance_scale,
true_guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |