Spaces:
Running
on
Zero
Running
on
Zero
""" | |
""" | |
from typing import Any | |
from typing import Callable | |
from typing import ParamSpec | |
from torchao.quantization import quantize_ | |
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig | |
import spaces | |
import torch | |
from torch.utils._pytree import tree_map, tree_map_only | |
P = ParamSpec('P') | |
TRANSFORMER_HIDDEN_DIM = torch.export.Dim.AUTO(min=3584, max=9727) | |
TRANSFORMER_DYNAMIC_SHAPES = { | |
'hidden_states': {1: TRANSFORMER_HIDDEN_DIM}, | |
} | |
INDUCTOR_CONFIGS = { | |
'conv_1x1_as_mm': True, | |
'epilogue_fusion': False, | |
'coordinate_descent_tuning': True, | |
'coordinate_descent_check_all_directions': True, | |
'max_autotune': True, | |
'triton.cudagraphs': True, | |
} | |
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): | |
def compile_transformer(): | |
with spaces.aoti_capture(pipeline.transformer) as call: | |
pipeline(*args, **kwargs) | |
dynamic_shapes = tree_map(lambda t: None, call.kwargs) | |
# dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda x: None, call.kwargs) | |
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES | |
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) | |
exported = torch.export.export( | |
mod=pipeline.transformer, | |
args=call.args, | |
kwargs=call.kwargs, | |
# dynamic_shapes=dynamic_shapes, | |
) | |
return spaces.aoti_compile(exported, INDUCTOR_CONFIGS) | |
spaces.aoti_apply(compile_transformer(), pipeline.transformer) | |