Hi3DGen / app.py
zhuhai111's picture
Update app.py
53ef571 verified
raw
history blame
7.61 kB
import gradio as gr
import os
import shutil
import tempfile
import datetime
import numpy as np
import torch
import imageio
import trimesh
from PIL import Image
from typing import *
from gradio_litmodel3d import LitModel3D
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.utils import render_utils
os.environ['SPCONV_ALGO'] = 'native'
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def preprocess_mesh(mesh_prompt):
print("Processing mesh")
trimesh_mesh = trimesh.load_mesh(mesh_prompt)
trimesh_mesh.export(mesh_prompt+'.glb')
return mesh_prompt+'.glb'
def preprocess_image(image):
if image is None:
return None
image = pipeline.preprocess_image(image, resolution=1024)
return image
def generate_3d(image, seed=-1,
ss_guidance_strength=3, ss_sampling_steps=50,
slat_guidance_strength=3, slat_sampling_steps=6,):
if image is None:
return None, None, None, None
if seed == -1:
seed = np.random.randint(0, MAX_SEED)
image = pipeline.preprocess_image(image, resolution=1024)
normal_image = normal_predictor(image, resolution=768, match_input_resolution=True, data_type='object')
outputs = pipeline.run(
normal_image,
seed=seed,
formats=["mesh",],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
generated_mesh = outputs['mesh'][0]
output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True)
mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb"
render_results = render_utils.render_video(generated_mesh, resolution=1024, ssaa=1, num_frames=8, pitch=0.25, inverse_direction=True)
def combine_diagonal(color_np, normal_np):
h, w, c = color_np.shape
mask = np.fromfunction(lambda y, x: x > y, (h, w)).astype(bool)
mask = np.stack([mask] * c, axis=-1)
combined_np = np.where(mask, color_np, normal_np)
return Image.fromarray(combined_np)
preview_images = [combine_diagonal(c, n) for c, n in zip(render_results['color'], render_results['normal'])]
trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True)
trimesh_mesh.export(mesh_path)
return preview_images, normal_image, mesh_path, mesh_path
def convert_mesh(mesh_path, export_format):
if not mesh_path:
return None
temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False)
mesh = trimesh.load_mesh(mesh_path)
mesh.export(temp_file.name)
return temp_file.name
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown("""
<h1 style='text-align: center;'>Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging</h1>
<p style='text-align: center;'>
<strong>V0.1, Introduced By
<a href="https://gaplab.cuhk.edu.cn/" target="_blank">GAP Lab</a> from CUHKSZ and
<a href="https://www.nvsgames.cn/" target="_blank">Game-AIGC Team</a> from ByteDance</strong>
</p>
""")
with gr.Row():
with gr.Column(scale=1):
with gr.Tabs():
with gr.Tab("Single Image"):
with gr.Row():
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil")
normal_output = gr.Image(label="Normal Bridge", image_mode="RGBA", type="pil")
with gr.Tab("Multiple Images"):
gr.Markdown("<div style='text-align: center; padding: 40px; font-size: 24px;'>Multiple Images functionality is coming soon!</div>")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(-1, MAX_SEED, label="Seed", value=0, step=1)
gr.Markdown("#### Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=50, step=1)
gr.Markdown("#### Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=6, step=1)
with gr.Group():
with gr.Row():
gen_shape_btn = gr.Button("Generate Shape", size="lg", variant="primary")
with gr.Column(scale=1):
with gr.Tabs():
with gr.Tab("Preview"):
output_gallery = gr.Gallery(label="Examples", columns=4, rows=2, object_fit="contain", height="auto", show_label=False)
with gr.Tab("3D Model"):
with gr.Column():
model_output = gr.Model3D(label="3D Model Preview (Each model is approx. 40MB)")
with gr.Column():
export_format = gr.Dropdown(
choices=["obj", "glb", "ply", "stl"],
value="glb",
label="File Format"
)
download_btn = gr.DownloadButton(label="Export Mesh", interactive=False)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt]
)
gen_shape_btn.click(
generate_3d,
inputs=[
image_prompt, seed,
ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps
],
outputs=[output_gallery, normal_output, model_output, download_btn]
).then(
lambda: gr.Button(interactive=True),
outputs=[download_btn],
)
def update_download_button(mesh_path, export_format):
if not mesh_path:
return gr.File.update(value=None, interactive=False)
download_path = convert_mesh(mesh_path, export_format)
return download_path
export_format.change(
update_download_button,
inputs=[model_output, export_format],
outputs=[download_btn]
).then(
lambda: gr.Button(interactive=True),
outputs=[download_btn],
)
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=image_prompt,
)
gr.Markdown("""
**Acknowledgments**: Hi3DGen is built on the shoulders of giants. We acknowledge contributions from:
- [Trellis 3D](https://github.com/microsoft/TRELLIS)
- [StableNormal](https://github.com/hugoycj/StableNormal)
""")
if __name__ == "__main__":
# ✅ 强制使用 CPU
pipeline = TrellisImageTo3DPipeline.from_pretrained("Stable-X/trellis-normal-v0-1")
pipeline.to("cpu") # <-- 强制使用 CPU
normal_predictor = torch.hub.load(
"hugoycj/StableNormal",
"StableNormal_turbo",
trust_repo=True,
yoso_version="yoso-normal-v1-8-1"
)
normal_predictor.to("cpu") # <-- 也强制使用 CPU
demo.launch()