PengWeixuanSZU commited on
Commit
9162228
·
verified ·
1 Parent(s): 99f32bd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -110
README.md CHANGED
@@ -1,113 +1,14 @@
1
- <h1 align="center">
2
- <span style="color:#2196f3;"><b>MiniMax</b></span><span style="color:#f06292;"><b>-Remover</b></span>: Taming Bad Noise Helps Video Object Removal
3
- </h1>
4
-
5
- <p align="center">
6
- Bojia Zi<sup>*</sup>,
7
- Weixuan Peng<sup>*</sup>,
8
- Xianbiao Qi<sup>†</sup>,
9
- Jianan Wang, Shihao Zhao, Rong Xiao, Kam-Fai Wong<br>
10
- <sup>*</sup> Equal contribution. <sup>†</sup> Corresponding author.
11
- </p>
12
-
13
- <p align="center">
14
- <a href="https://huggingface.co/zibojia/minimax-remover"><img alt="Huggingface Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-Model-brightgreen"></a>
15
- <a href="https://github.com/zibojia/MiniMax-Remover"><img alt="Github" src="https://img.shields.io/badge/MiniMaxRemover-github-black"></a>
16
- <a href="https://huggingface.co/spaces/zibojia/MiniMaxRemover"><img alt="Huggingface Space" src="https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-Space-1e90ff"></a>
17
- <a href="https://arxiv.org/abs/2505.24873"><img alt="arXiv" src="https://img.shields.io/badge/MiniMaxRemover-arXiv-b31b1b"></a>
18
- <a href="https://www.youtube.com/watch?v=KaU5yNl6CTc"><img alt="YouTube" src="https://img.shields.io/badge/Youtube-video-ff0000"></a>
19
- <a href="https://minimax-remover.github.io"><img alt="Demo Page" src="https://img.shields.io/badge/Website-Demo%20Page-yellow"></a>
20
- </p>
21
-
22
- ---
23
-
24
- ## 🚀 Overview
25
-
26
- **MiniMax-Remover** is a fast and effective video object remover based on minimax optimization. It operates in two stages: the first stage trains a remover using a simplified DiT architecture, while the second stage distills a robust remover with CFG removal and fewer inference steps.
27
-
28
- ---
29
-
30
- ## ✨ Features:
31
-
32
- * **Fast:** Requires only 6 inference steps and does not use CFG, making it highly efficient.
33
-
34
- * **Effective:** Seamlessly removes objects from videos and generates high-quality visual content.
35
-
36
- * **Robust:** Maintains robustness by preventing the regeneration of undesired objects or artifacts within the masked region, even under varying noise conditions.
37
-
38
- ---
39
-
40
- ## 🛠️ Installation
41
-
42
- All dependencies are listed in `requirements.txt`.
43
-
44
- ```bash
45
- pip install -r requirements.txt
46
- ```
47
-
48
  ---
49
-
50
- ## 🏃‍♂️ Gradio Demo
51
-
52
- <p align="center">
53
- <a href="https://youtu.be/1V7Ov4vmnBc" target="_blank">
54
- <img src="./imgs/gradio_demo.gif" alt="firstpage" style="width:80%;" />
55
- </a>
56
- </p>
57
-
58
- You can use this gradio demo to remove objects. Note that you don't need to compile the sam2.
59
- ```bash
60
- cd gradio_demo
61
- python3 test.py
62
- ```
63
-
64
- ---
65
-
66
- ## 📂 Download
67
-
68
- ```shell
69
- huggingface-cli download zibojia/minimax-remover --include vae transformer scheduler --local-dir .
70
- ```
71
-
72
- ---
73
-
74
- ## ⚡ Quick Start
75
-
76
- ### Minimal Example
77
-
78
- ```python
79
- import torch
80
- from diffusers.utils import export_to_video
81
- from decord import VideoReader
82
- from diffusers.models import AutoencoderKLWan
83
- from transformer_minimax_remover import Transformer3DModel
84
- from diffusers.schedulers import UniPCMultistepScheduler
85
- from pipeline_minimax_remover import Minimax_Remover_Pipeline
86
-
87
- random_seed = 42
88
- video_length = 81
89
- device = torch.device("cuda:0")
90
-
91
- # Load model weights separately
92
- vae = AutoencoderKLWan.from_pretrained("./vae", torch_dtype=torch.float16)
93
- transformer = Transformer3DModel.from_pretrained("./transformer", torch_dtype=torch.float16)
94
- scheduler = UniPCMultistepScheduler.from_pretrained("./scheduler")
95
-
96
- images = # images in range [-1, 1]
97
- masks = # masks in range [0, 1]
98
-
99
- # Initialize the pipeline (pass the loaded weights as objects)
100
- pipe = Minimax_Remover_Pipeline(vae=vae, transformer=transformer, \
101
- scheduler=scheduler, torch_dtype=torch.float16
102
- ).to(device)
103
-
104
- result = pipe(images=images, masks=masks, num_frames=video_length, height=480, width=832, \
105
- num_inference_steps=12, generator=torch.Generator(device=device).manual_seed(random_seed), iterations=6 \
106
- ).frames[0]
107
- export_to_video(result, "./output.mp4")
108
- ```
109
  ---
110
 
111
- ## 📧 Contact
112
-
113
- Feel free to send an email to [[email protected]](mailto:[email protected]) if you have any questions or suggestions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: MiniMax Remover
3
+ emoji:
4
+ colorFrom: purple
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 5.34.1
8
+ app_file: app.py
9
+ pinned: false
10
+ license: cc-by-nc-2.0
11
+ short_description: MiniMax-Remover is a fast and effective video object remover
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference