Find3D / Pointcept /configs /scannet /insseg-pointgroup-v1m1-0-spunet-base.py
ziqima's picture
initial commit
4893ce0
_base_ = ["../_base_/default_runtime.py"]
# misc custom setting
batch_size = 12 # bs: total bs in all gpus
num_worker = 12
mix_prob = 0
empty_cache = False
enable_amp = True
evaluate = True
class_names = [
"wall",
"floor",
"cabinet",
"bed",
"chair",
"sofa",
"table",
"door",
"window",
"bookshelf",
"picture",
"counter",
"desk",
"curtain",
"refridgerator",
"shower curtain",
"toilet",
"sink",
"bathtub",
"otherfurniture",
]
num_classes = 20
segment_ignore_index = (-1, 0, 1)
# model settings
model = dict(
type="PG-v1m1",
backbone=dict(
type="SpUNet-v1m1",
in_channels=6,
num_classes=0,
channels=(32, 64, 128, 256, 256, 128, 96, 96),
layers=(2, 3, 4, 6, 2, 2, 2, 2),
),
backbone_out_channels=96,
semantic_num_classes=num_classes,
semantic_ignore_index=-1,
segment_ignore_index=segment_ignore_index,
instance_ignore_index=-1,
cluster_thresh=1.5,
cluster_closed_points=300,
cluster_propose_points=100,
cluster_min_points=50,
)
# scheduler settings
epoch = 800
optimizer = dict(type="SGD", lr=0.1, momentum=0.9, weight_decay=0.0001, nesterov=True)
scheduler = dict(type="PolyLR")
# dataset settings
dataset_type = "ScanNetDataset"
data_root = "data/scannet"
data = dict(
num_classes=num_classes,
ignore_index=-1,
names=class_names,
train=dict(
type=dataset_type,
split="train",
data_root=data_root,
transform=[
dict(type="CenterShift", apply_z=True),
dict(
type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.5
),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis='z', p=0.75),
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
dict(type="ChromaticTranslation", p=0.95, ratio=0.1),
dict(type="ChromaticJitter", p=0.95, std=0.05),
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
dict(
type="GridSample",
grid_size=0.02,
hash_type="fnv",
mode="train",
return_grid_coord=True,
keys=("coord", "color", "normal", "segment", "instance"),
),
dict(type="SphereCrop", sample_rate=0.8, mode="random"),
dict(type="NormalizeColor"),
dict(
type="InstanceParser",
segment_ignore_index=segment_ignore_index,
instance_ignore_index=-1,
),
dict(type="ToTensor"),
dict(
type="Collect",
keys=(
"coord",
"grid_coord",
"segment",
"instance",
"instance_centroid",
"bbox",
),
feat_keys=("color", "normal"),
),
],
test_mode=False,
),
val=dict(
type=dataset_type,
split="val",
data_root=data_root,
transform=[
dict(type="CenterShift", apply_z=True),
dict(
type="Copy",
keys_dict={
"coord": "origin_coord",
"segment": "origin_segment",
"instance": "origin_instance",
},
),
dict(
type="GridSample",
grid_size=0.02,
hash_type="fnv",
mode="train",
return_grid_coord=True,
keys=("coord", "color", "normal", "segment", "instance"),
),
# dict(type="SphereCrop", point_max=1000000, mode='center'),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
dict(
type="InstanceParser",
segment_ignore_index=segment_ignore_index,
instance_ignore_index=-1,
),
dict(type="ToTensor"),
dict(
type="Collect",
keys=(
"coord",
"grid_coord",
"segment",
"instance",
"origin_coord",
"origin_segment",
"origin_instance",
"instance_centroid",
"bbox",
),
feat_keys=("color", "normal"),
offset_keys_dict=dict(offset="coord", origin_offset="origin_coord"),
),
],
test_mode=False,
),
test=dict(), # currently not available
)
hooks = [
dict(type="CheckpointLoader", keywords="module.", replacement="module."),
dict(type="IterationTimer", warmup_iter=2),
dict(type="InformationWriter"),
dict(
type="InsSegEvaluator",
segment_ignore_index=segment_ignore_index,
instance_ignore_index=-1,
),
dict(type="CheckpointSaver", save_freq=None),
]