ziqima's picture
initial commit
4893ce0
"""
Preprocessing Script for nuScenes Informantion
modified from OpenPCDet (https://github.com/open-mmlab/OpenPCDet)
Author: Xiaoyang Wu ([email protected])
Please cite our work if the code is helpful to you.
"""
import os
from pathlib import Path
import numpy as np
import argparse
import tqdm
import pickle
from functools import reduce
from pyquaternion import Quaternion
from nuscenes.nuscenes import NuScenes
from nuscenes.utils import splits
from nuscenes.utils.geometry_utils import transform_matrix
map_name_from_general_to_detection = {
"human.pedestrian.adult": "pedestrian",
"human.pedestrian.child": "pedestrian",
"human.pedestrian.wheelchair": "ignore",
"human.pedestrian.stroller": "ignore",
"human.pedestrian.personal_mobility": "ignore",
"human.pedestrian.police_officer": "pedestrian",
"human.pedestrian.construction_worker": "pedestrian",
"animal": "ignore",
"vehicle.car": "car",
"vehicle.motorcycle": "motorcycle",
"vehicle.bicycle": "bicycle",
"vehicle.bus.bendy": "bus",
"vehicle.bus.rigid": "bus",
"vehicle.truck": "truck",
"vehicle.construction": "construction_vehicle",
"vehicle.emergency.ambulance": "ignore",
"vehicle.emergency.police": "ignore",
"vehicle.trailer": "trailer",
"movable_object.barrier": "barrier",
"movable_object.trafficcone": "traffic_cone",
"movable_object.pushable_pullable": "ignore",
"movable_object.debris": "ignore",
"static_object.bicycle_rack": "ignore",
}
cls_attr_dist = {
"barrier": {
"cycle.with_rider": 0,
"cycle.without_rider": 0,
"pedestrian.moving": 0,
"pedestrian.sitting_lying_down": 0,
"pedestrian.standing": 0,
"vehicle.moving": 0,
"vehicle.parked": 0,
"vehicle.stopped": 0,
},
"bicycle": {
"cycle.with_rider": 2791,
"cycle.without_rider": 8946,
"pedestrian.moving": 0,
"pedestrian.sitting_lying_down": 0,
"pedestrian.standing": 0,
"vehicle.moving": 0,
"vehicle.parked": 0,
"vehicle.stopped": 0,
},
"bus": {
"cycle.with_rider": 0,
"cycle.without_rider": 0,
"pedestrian.moving": 0,
"pedestrian.sitting_lying_down": 0,
"pedestrian.standing": 0,
"vehicle.moving": 9092,
"vehicle.parked": 3294,
"vehicle.stopped": 3881,
},
"car": {
"cycle.with_rider": 0,
"cycle.without_rider": 0,
"pedestrian.moving": 0,
"pedestrian.sitting_lying_down": 0,
"pedestrian.standing": 0,
"vehicle.moving": 114304,
"vehicle.parked": 330133,
"vehicle.stopped": 46898,
},
"construction_vehicle": {
"cycle.with_rider": 0,
"cycle.without_rider": 0,
"pedestrian.moving": 0,
"pedestrian.sitting_lying_down": 0,
"pedestrian.standing": 0,
"vehicle.moving": 882,
"vehicle.parked": 11549,
"vehicle.stopped": 2102,
},
"ignore": {
"cycle.with_rider": 307,
"cycle.without_rider": 73,
"pedestrian.moving": 0,
"pedestrian.sitting_lying_down": 0,
"pedestrian.standing": 0,
"vehicle.moving": 165,
"vehicle.parked": 400,
"vehicle.stopped": 102,
},
"motorcycle": {
"cycle.with_rider": 4233,
"cycle.without_rider": 8326,
"pedestrian.moving": 0,
"pedestrian.sitting_lying_down": 0,
"pedestrian.standing": 0,
"vehicle.moving": 0,
"vehicle.parked": 0,
"vehicle.stopped": 0,
},
"pedestrian": {
"cycle.with_rider": 0,
"cycle.without_rider": 0,
"pedestrian.moving": 157444,
"pedestrian.sitting_lying_down": 13939,
"pedestrian.standing": 46530,
"vehicle.moving": 0,
"vehicle.parked": 0,
"vehicle.stopped": 0,
},
"traffic_cone": {
"cycle.with_rider": 0,
"cycle.without_rider": 0,
"pedestrian.moving": 0,
"pedestrian.sitting_lying_down": 0,
"pedestrian.standing": 0,
"vehicle.moving": 0,
"vehicle.parked": 0,
"vehicle.stopped": 0,
},
"trailer": {
"cycle.with_rider": 0,
"cycle.without_rider": 0,
"pedestrian.moving": 0,
"pedestrian.sitting_lying_down": 0,
"pedestrian.standing": 0,
"vehicle.moving": 3421,
"vehicle.parked": 19224,
"vehicle.stopped": 1895,
},
"truck": {
"cycle.with_rider": 0,
"cycle.without_rider": 0,
"pedestrian.moving": 0,
"pedestrian.sitting_lying_down": 0,
"pedestrian.standing": 0,
"vehicle.moving": 21339,
"vehicle.parked": 55626,
"vehicle.stopped": 11097,
},
}
def get_available_scenes(nusc):
available_scenes = []
for scene in nusc.scene:
scene_token = scene["token"]
scene_rec = nusc.get("scene", scene_token)
sample_rec = nusc.get("sample", scene_rec["first_sample_token"])
sd_rec = nusc.get("sample_data", sample_rec["data"]["LIDAR_TOP"])
has_more_frames = True
scene_not_exist = False
while has_more_frames:
lidar_path, boxes, _ = nusc.get_sample_data(sd_rec["token"])
if not Path(lidar_path).exists():
scene_not_exist = True
break
else:
break
if scene_not_exist:
continue
available_scenes.append(scene)
return available_scenes
def get_sample_data(nusc, sample_data_token, selected_anntokens=None):
"""
Returns the data path as well as all annotations related to that sample_data.
Note that the boxes are transformed into the current sensor"s coordinate frame.
Args:
nusc:
sample_data_token: Sample_data token.
selected_anntokens: If provided only return the selected annotation.
Returns:
"""
# Retrieve sensor & pose records
sd_record = nusc.get("sample_data", sample_data_token)
cs_record = nusc.get("calibrated_sensor", sd_record["calibrated_sensor_token"])
sensor_record = nusc.get("sensor", cs_record["sensor_token"])
pose_record = nusc.get("ego_pose", sd_record["ego_pose_token"])
data_path = nusc.get_sample_data_path(sample_data_token)
if sensor_record["modality"] == "camera":
cam_intrinsic = np.array(cs_record["camera_intrinsic"])
else:
cam_intrinsic = None
# Retrieve all sample annotations and map to sensor coordinate system.
if selected_anntokens is not None:
boxes = list(map(nusc.get_box, selected_anntokens))
else:
boxes = nusc.get_boxes(sample_data_token)
# Make list of Box objects including coord system transforms.
box_list = []
for box in boxes:
box.velocity = nusc.box_velocity(box.token)
# Move box to ego vehicle coord system
box.translate(-np.array(pose_record["translation"]))
box.rotate(Quaternion(pose_record["rotation"]).inverse)
# Move box to sensor coord system
box.translate(-np.array(cs_record["translation"]))
box.rotate(Quaternion(cs_record["rotation"]).inverse)
box_list.append(box)
return data_path, box_list, cam_intrinsic
def quaternion_yaw(q: Quaternion) -> float:
"""
Calculate the yaw angle from a quaternion.
Note that this only works for a quaternion that represents a box in lidar or global coordinate frame.
It does not work for a box in the camera frame.
:param q: Quaternion of interest.
:return: Yaw angle in radians.
"""
# Project into xy plane.
v = np.dot(q.rotation_matrix, np.array([1, 0, 0]))
# Measure yaw using arctan.
yaw = np.arctan2(v[1], v[0])
return yaw
def obtain_sensor2top(
nusc, sensor_token, l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, sensor_type="lidar"
):
"""Obtain the info with RT matric from general sensor to Top LiDAR.
Args:
nusc (class): Dataset class in the nuScenes dataset.
sensor_token (str): Sample data token corresponding to the
specific sensor type.
l2e_t (np.ndarray): Translation from lidar to ego in shape (1, 3).
l2e_r_mat (np.ndarray): Rotation matrix from lidar to ego
in shape (3, 3).
e2g_t (np.ndarray): Translation from ego to global in shape (1, 3).
e2g_r_mat (np.ndarray): Rotation matrix from ego to global
in shape (3, 3).
sensor_type (str): Sensor to calibrate. Default: "lidar".
Returns:
sweep (dict): Sweep information after transformation.
"""
sd_rec = nusc.get("sample_data", sensor_token)
cs_record = nusc.get("calibrated_sensor", sd_rec["calibrated_sensor_token"])
pose_record = nusc.get("ego_pose", sd_rec["ego_pose_token"])
data_path = str(nusc.get_sample_data_path(sd_rec["token"]))
# if os.getcwd() in data_path: # path from lyftdataset is absolute path
# data_path = data_path.split(f"{os.getcwd()}/")[-1] # relative path
sweep = {
"data_path": data_path,
"type": sensor_type,
"sample_data_token": sd_rec["token"],
"sensor2ego_translation": cs_record["translation"],
"sensor2ego_rotation": cs_record["rotation"],
"ego2global_translation": pose_record["translation"],
"ego2global_rotation": pose_record["rotation"],
"timestamp": sd_rec["timestamp"],
}
l2e_r_s = sweep["sensor2ego_rotation"]
l2e_t_s = sweep["sensor2ego_translation"]
e2g_r_s = sweep["ego2global_rotation"]
e2g_t_s = sweep["ego2global_translation"]
# obtain the RT from sensor to Top LiDAR
# sweep->ego->global->ego'->lidar
l2e_r_s_mat = Quaternion(l2e_r_s).rotation_matrix
e2g_r_s_mat = Quaternion(e2g_r_s).rotation_matrix
R = (l2e_r_s_mat.T @ e2g_r_s_mat.T) @ (
np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T
)
T = (l2e_t_s @ e2g_r_s_mat.T + e2g_t_s) @ (
np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T
)
T -= (
e2g_t @ (np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T)
+ l2e_t @ np.linalg.inv(l2e_r_mat).T
).squeeze(0)
sweep["sensor2lidar_rotation"] = R.T # points @ R.T + T
sweep["sensor2lidar_translation"] = T
return sweep
def fill_trainval_infos(
data_path, nusc, train_scenes, test=False, max_sweeps=10, with_camera=False
):
train_nusc_infos = []
val_nusc_infos = []
progress_bar = tqdm.tqdm(
total=len(nusc.sample), desc="create_info", dynamic_ncols=True
)
ref_chan = "LIDAR_TOP" # The radar channel from which we track back n sweeps to aggregate the point cloud.
chan = "LIDAR_TOP" # The reference channel of the current sample_rec that the point clouds are mapped to.
for index, sample in enumerate(nusc.sample):
progress_bar.update()
ref_sd_token = sample["data"][ref_chan]
ref_sd_rec = nusc.get("sample_data", ref_sd_token)
ref_cs_rec = nusc.get(
"calibrated_sensor", ref_sd_rec["calibrated_sensor_token"]
)
ref_pose_rec = nusc.get("ego_pose", ref_sd_rec["ego_pose_token"])
ref_time = 1e-6 * ref_sd_rec["timestamp"]
ref_lidar_path, ref_boxes, _ = get_sample_data(nusc, ref_sd_token)
ref_cam_front_token = sample["data"]["CAM_FRONT"]
ref_cam_path, _, ref_cam_intrinsic = nusc.get_sample_data(ref_cam_front_token)
# Homogeneous transform from ego car frame to reference frame
ref_from_car = transform_matrix(
ref_cs_rec["translation"], Quaternion(ref_cs_rec["rotation"]), inverse=True
)
# Homogeneous transformation matrix from global to _current_ ego car frame
car_from_global = transform_matrix(
ref_pose_rec["translation"],
Quaternion(ref_pose_rec["rotation"]),
inverse=True,
)
info = {
"lidar_path": Path(ref_lidar_path).relative_to(data_path).__str__(),
"lidar_token": ref_sd_token,
"cam_front_path": Path(ref_cam_path).relative_to(data_path).__str__(),
"cam_intrinsic": ref_cam_intrinsic,
"token": sample["token"],
"sweeps": [],
"ref_from_car": ref_from_car,
"car_from_global": car_from_global,
"timestamp": ref_time,
}
if with_camera:
info["cams"] = dict()
l2e_r = ref_cs_rec["rotation"]
l2e_t = (ref_cs_rec["translation"],)
e2g_r = ref_pose_rec["rotation"]
e2g_t = ref_pose_rec["translation"]
l2e_r_mat = Quaternion(l2e_r).rotation_matrix
e2g_r_mat = Quaternion(e2g_r).rotation_matrix
# obtain 6 image's information per frame
camera_types = [
"CAM_FRONT",
"CAM_FRONT_RIGHT",
"CAM_FRONT_LEFT",
"CAM_BACK",
"CAM_BACK_LEFT",
"CAM_BACK_RIGHT",
]
for cam in camera_types:
cam_token = sample["data"][cam]
cam_path, _, camera_intrinsics = nusc.get_sample_data(cam_token)
cam_info = obtain_sensor2top(
nusc, cam_token, l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, cam
)
cam_info["data_path"] = (
Path(cam_info["data_path"]).relative_to(data_path).__str__()
)
cam_info.update(camera_intrinsics=camera_intrinsics)
info["cams"].update({cam: cam_info})
sample_data_token = sample["data"][chan]
curr_sd_rec = nusc.get("sample_data", sample_data_token)
sweeps = []
while len(sweeps) < max_sweeps - 1:
if curr_sd_rec["prev"] == "":
if len(sweeps) == 0:
sweep = {
"lidar_path": Path(ref_lidar_path)
.relative_to(data_path)
.__str__(),
"sample_data_token": curr_sd_rec["token"],
"transform_matrix": None,
"time_lag": curr_sd_rec["timestamp"] * 0,
}
sweeps.append(sweep)
else:
sweeps.append(sweeps[-1])
else:
curr_sd_rec = nusc.get("sample_data", curr_sd_rec["prev"])
# Get past pose
current_pose_rec = nusc.get("ego_pose", curr_sd_rec["ego_pose_token"])
global_from_car = transform_matrix(
current_pose_rec["translation"],
Quaternion(current_pose_rec["rotation"]),
inverse=False,
)
# Homogeneous transformation matrix from sensor coordinate frame to ego car frame.
current_cs_rec = nusc.get(
"calibrated_sensor", curr_sd_rec["calibrated_sensor_token"]
)
car_from_current = transform_matrix(
current_cs_rec["translation"],
Quaternion(current_cs_rec["rotation"]),
inverse=False,
)
tm = reduce(
np.dot,
[ref_from_car, car_from_global, global_from_car, car_from_current],
)
lidar_path = nusc.get_sample_data_path(curr_sd_rec["token"])
time_lag = ref_time - 1e-6 * curr_sd_rec["timestamp"]
sweep = {
"lidar_path": Path(lidar_path).relative_to(data_path).__str__(),
"sample_data_token": curr_sd_rec["token"],
"transform_matrix": tm,
"global_from_car": global_from_car,
"car_from_current": car_from_current,
"time_lag": time_lag,
}
sweeps.append(sweep)
info["sweeps"] = sweeps
assert len(info["sweeps"]) == max_sweeps - 1, (
f"sweep {curr_sd_rec['token']} only has {len(info['sweeps'])} sweeps, "
f"you should duplicate to sweep num {max_sweeps - 1}"
)
if not test:
# processing gt bbox
annotations = [
nusc.get("sample_annotation", token) for token in sample["anns"]
]
# the filtering gives 0.5~1 map improvement
num_lidar_pts = np.array([anno["num_lidar_pts"] for anno in annotations])
num_radar_pts = np.array([anno["num_radar_pts"] for anno in annotations])
mask = num_lidar_pts + num_radar_pts > 0
locs = np.array([b.center for b in ref_boxes]).reshape(-1, 3)
dims = np.array([b.wlh for b in ref_boxes]).reshape(-1, 3)[
:, [1, 0, 2]
] # wlh == > dxdydz (lwh)
velocity = np.array([b.velocity for b in ref_boxes]).reshape(-1, 3)
rots = np.array([quaternion_yaw(b.orientation) for b in ref_boxes]).reshape(
-1, 1
)
names = np.array([b.name for b in ref_boxes])
tokens = np.array([b.token for b in ref_boxes])
gt_boxes = np.concatenate([locs, dims, rots, velocity[:, :2]], axis=1)
assert len(annotations) == len(gt_boxes) == len(velocity)
info["gt_boxes"] = gt_boxes[mask, :]
info["gt_boxes_velocity"] = velocity[mask, :]
info["gt_names"] = np.array(
[map_name_from_general_to_detection[name] for name in names]
)[mask]
info["gt_boxes_token"] = tokens[mask]
info["num_lidar_pts"] = num_lidar_pts[mask]
info["num_radar_pts"] = num_radar_pts[mask]
# processing gt segment
segment_path = nusc.get("lidarseg", ref_sd_token)["filename"]
info["gt_segment_path"] = segment_path
if sample["scene_token"] in train_scenes:
train_nusc_infos.append(info)
else:
val_nusc_infos.append(info)
progress_bar.close()
return train_nusc_infos, val_nusc_infos
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset_root", required=True, help="Path to the nuScenes dataset."
)
parser.add_argument(
"--output_root",
required=True,
help="Output path where processed information located.",
)
parser.add_argument(
"--max_sweeps", default=10, type=int, help="Max number of sweeps. Default: 10."
)
parser.add_argument(
"--with_camera",
action="store_true",
default=False,
help="Whether use camera or not.",
)
config = parser.parse_args()
print(f"Loading nuScenes tables for version v1.0-trainval...")
nusc_trainval = NuScenes(
version="v1.0-trainval", dataroot=config.dataset_root, verbose=False
)
available_scenes_trainval = get_available_scenes(nusc_trainval)
available_scene_names_trainval = [s["name"] for s in available_scenes_trainval]
print("total scene num:", len(nusc_trainval.scene))
print("exist scene num:", len(available_scenes_trainval))
assert len(available_scenes_trainval) == len(nusc_trainval.scene) == 850
print(f"Loading nuScenes tables for version v1.0-test...")
nusc_test = NuScenes(
version="v1.0-test", dataroot=config.dataset_root, verbose=False
)
available_scenes_test = get_available_scenes(nusc_test)
available_scene_names_test = [s["name"] for s in available_scenes_test]
print("total scene num:", len(nusc_test.scene))
print("exist scene num:", len(available_scenes_test))
assert len(available_scenes_test) == len(nusc_test.scene) == 150
train_scenes = splits.train
train_scenes = set(
[
available_scenes_trainval[available_scene_names_trainval.index(s)]["token"]
for s in train_scenes
]
)
test_scenes = splits.test
test_scenes = set(
[
available_scenes_test[available_scene_names_test.index(s)]["token"]
for s in test_scenes
]
)
print(f"Filling trainval information...")
train_nusc_infos, val_nusc_infos = fill_trainval_infos(
config.dataset_root,
nusc_trainval,
train_scenes,
test=False,
max_sweeps=config.max_sweeps,
with_camera=config.with_camera,
)
print(f"Filling test information...")
test_nusc_infos, _ = fill_trainval_infos(
config.dataset_root,
nusc_test,
test_scenes,
test=True,
max_sweeps=config.max_sweeps,
with_camera=config.with_camera,
)
print(f"Saving nuScenes information...")
os.makedirs(os.path.join(config.output_root, "info"), exist_ok=True)
print(
f"train sample: {len(train_nusc_infos)}, val sample: {len(val_nusc_infos)}, test sample: {len(test_nusc_infos)}"
)
with open(
os.path.join(
config.output_root,
"info",
f"nuscenes_infos_{config.max_sweeps}sweeps_train.pkl",
),
"wb",
) as f:
pickle.dump(train_nusc_infos, f)
with open(
os.path.join(
config.output_root,
"info",
f"nuscenes_infos_{config.max_sweeps}sweeps_val.pkl",
),
"wb",
) as f:
pickle.dump(val_nusc_infos, f)
with open(
os.path.join(
config.output_root,
"info",
f"nuscenes_infos_{config.max_sweeps}sweeps_test.pkl",
),
"wb",
) as f:
pickle.dump(test_nusc_infos, f)