Spaces:
Runtime error
Runtime error
import os, struct | |
import numpy as np | |
import zlib | |
import imageio | |
import cv2 | |
COMPRESSION_TYPE_COLOR = {-1: "unknown", 0: "raw", 1: "png", 2: "jpeg"} | |
COMPRESSION_TYPE_DEPTH = { | |
-1: "unknown", | |
0: "raw_ushort", | |
1: "zlib_ushort", | |
2: "occi_ushort", | |
} | |
class RGBDFrame: | |
def load(self, file_handle): | |
self.camera_to_world = np.asarray( | |
struct.unpack("f" * 16, file_handle.read(16 * 4)), dtype=np.float32 | |
).reshape(4, 4) | |
self.timestamp_color = struct.unpack("Q", file_handle.read(8))[0] | |
self.timestamp_depth = struct.unpack("Q", file_handle.read(8))[0] | |
self.color_size_bytes = struct.unpack("Q", file_handle.read(8))[0] | |
self.depth_size_bytes = struct.unpack("Q", file_handle.read(8))[0] | |
self.color_data = b"".join( | |
struct.unpack( | |
"c" * self.color_size_bytes, file_handle.read(self.color_size_bytes) | |
) | |
) | |
self.depth_data = b"".join( | |
struct.unpack( | |
"c" * self.depth_size_bytes, file_handle.read(self.depth_size_bytes) | |
) | |
) | |
def decompress_depth(self, compression_type): | |
if compression_type == "zlib_ushort": | |
return self.decompress_depth_zlib() | |
else: | |
raise | |
def decompress_depth_zlib(self): | |
return zlib.decompress(self.depth_data) | |
def decompress_color(self, compression_type): | |
if compression_type == "jpeg": | |
return self.decompress_color_jpeg() | |
else: | |
raise | |
def decompress_color_jpeg(self): | |
return imageio.imread(self.color_data) | |
class SensorData: | |
def __init__(self, filename): | |
self.version = 4 | |
self.load(filename) | |
def load(self, filename): | |
with open(filename, "rb") as f: | |
version = struct.unpack("I", f.read(4))[0] | |
assert self.version == version | |
strlen = struct.unpack("Q", f.read(8))[0] | |
self.sensor_name = b"".join(struct.unpack("c" * strlen, f.read(strlen))) | |
self.intrinsic_color = np.asarray( | |
struct.unpack("f" * 16, f.read(16 * 4)), dtype=np.float32 | |
).reshape(4, 4) | |
self.extrinsic_color = np.asarray( | |
struct.unpack("f" * 16, f.read(16 * 4)), dtype=np.float32 | |
).reshape(4, 4) | |
self.intrinsic_depth = np.asarray( | |
struct.unpack("f" * 16, f.read(16 * 4)), dtype=np.float32 | |
).reshape(4, 4) | |
self.extrinsic_depth = np.asarray( | |
struct.unpack("f" * 16, f.read(16 * 4)), dtype=np.float32 | |
).reshape(4, 4) | |
self.color_compression_type = COMPRESSION_TYPE_COLOR[ | |
struct.unpack("i", f.read(4))[0] | |
] | |
self.depth_compression_type = COMPRESSION_TYPE_DEPTH[ | |
struct.unpack("i", f.read(4))[0] | |
] | |
self.color_width = struct.unpack("I", f.read(4))[0] | |
self.color_height = struct.unpack("I", f.read(4))[0] | |
self.depth_width = struct.unpack("I", f.read(4))[0] | |
self.depth_height = struct.unpack("I", f.read(4))[0] | |
self.depth_shift = struct.unpack("f", f.read(4))[0] | |
num_frames = struct.unpack("Q", f.read(8))[0] | |
self.frames = [] | |
for i in range(num_frames): | |
frame = RGBDFrame() | |
frame.load(f) | |
self.frames.append(frame) | |
def export_depth_images(self, output_path, image_size=None, frame_skip=1): | |
if not os.path.exists(output_path): | |
os.makedirs(output_path) | |
print( | |
"exporting", len(self.frames) // frame_skip, " depth frames to", output_path | |
) | |
for f in range(0, len(self.frames), frame_skip): | |
if os.path.exists((os.path.join(output_path, str(f) + ".png"))): | |
continue | |
if f % 100 == 0: | |
print( | |
"exporting", | |
f, | |
"th depth frames to", | |
os.path.join(output_path, str(f) + ".png"), | |
) | |
depth_data = self.frames[f].decompress_depth(self.depth_compression_type) | |
depth = np.fromstring(depth_data, dtype=np.uint16).reshape( | |
self.depth_height, self.depth_width | |
) | |
if image_size is not None: | |
depth = cv2.resize( | |
depth, | |
(image_size[1], image_size[0]), | |
interpolation=cv2.INTER_NEAREST, | |
) | |
imageio.imwrite(os.path.join(output_path, str(f) + ".png"), depth) | |
def export_color_images(self, output_path, image_size=None, frame_skip=1): | |
if not os.path.exists(output_path): | |
os.makedirs(output_path) | |
print( | |
"exporting", len(self.frames) // frame_skip, "color frames to", output_path | |
) | |
for f in range(0, len(self.frames), frame_skip): | |
if os.path.exists((os.path.join(output_path, str(f) + ".png"))): | |
continue | |
if f % 100 == 0: | |
print( | |
"exporting", | |
f, | |
"th color frames to", | |
os.path.join(output_path, str(f) + ".png"), | |
) | |
color = self.frames[f].decompress_color(self.color_compression_type) | |
if image_size is not None: | |
color = cv2.resize( | |
color, | |
(image_size[1], image_size[0]), | |
interpolation=cv2.INTER_NEAREST, | |
) | |
# imageio.imwrite(os.path.join(output_path, str(f) + '.jpg'), color) | |
imageio.imwrite(os.path.join(output_path, str(f) + ".png"), color) | |
def save_mat_to_file(self, matrix, filename): | |
with open(filename, "w") as f: | |
for line in matrix: | |
np.savetxt(f, line[np.newaxis], fmt="%f") | |
def export_poses(self, output_path, frame_skip=1): | |
if not os.path.exists(output_path): | |
os.makedirs(output_path) | |
print( | |
"exporting", len(self.frames) // frame_skip, "camera poses to", output_path | |
) | |
for f in range(0, len(self.frames), frame_skip): | |
self.save_mat_to_file( | |
self.frames[f].camera_to_world, | |
os.path.join(output_path, str(f) + ".txt"), | |
) | |
def export_intrinsics(self, output_path): | |
if not os.path.exists(output_path): | |
os.makedirs(output_path) | |
print("exporting camera intrinsics to", output_path) | |
self.save_mat_to_file( | |
self.intrinsic_color, os.path.join(output_path, "intrinsic_color.txt") | |
) | |
self.save_mat_to_file( | |
self.extrinsic_color, os.path.join(output_path, "extrinsic_color.txt") | |
) | |
self.save_mat_to_file( | |
self.intrinsic_depth, os.path.join(output_path, "intrinsic_depth.txt") | |
) | |
self.save_mat_to_file( | |
self.extrinsic_depth, os.path.join(output_path, "extrinsic_depth.txt") | |
) | |