Spaces:
Running
Running
File size: 8,663 Bytes
b4be393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import streamlit as st
import pandas as pd
import os
from langchain_community.document_loaders import DataFrameLoader
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from dotenv import load_dotenv
# --- 1. Page Configuration ---
st.set_page_config(
page_title="Quranic Insight AI",
page_icon="🕋",
layout="wide",
initial_sidebar_state="expanded"
)
# --- 2. Custom CSS for Theming and Design ---
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Merriweather:wght@300;400;700&family=Amiri&display=swap');
/* Main background with geometric pattern */
.stApp {
background-color: #1a1a1a; /* Dark Charcoal */
background-image: linear-gradient(315deg, rgba(255, 255, 255, 0.02) 25%, transparent 25%),
linear-gradient(45deg, rgba(255, 255, 255, 0.02) 25%, transparent 25%);
background-size: 20px 20px;
color: #e0e0e0; /* Off-white text */
}
/* Main title font and color */
h1 {
font-family: 'Amiri', serif;
color: #d4af37; /* Soft Gold */
text-align: center;
padding-top: 2rem;
}
/* Subtitle style */
.subtitle {
font-family: 'Merriweather', serif;
color: #b0b0b0;
text-align: center;
font-size: 1.1rem;
}
/* Sidebar styling */
.st-emotion-cache-16txtl3 {
background-color: #212121;
}
/* Chat message styling */
.st-emotion-cache-1c7y2kd { /* Chat message container */
background-color: rgba(42, 42, 42, 0.8);
border: 1px solid #d4af37;
border-radius: 12px;
margin-bottom: 1rem;
}
/* Input box styling */
.st-emotion-cache-1jicfl2 {
background-color: #2a2a2a;
}
/* Output formatting improvements */
.stMarkdown h3 {
color: #50c878; /* Mint Green for headings */
border-bottom: 2px solid #d4af37;
padding-bottom: 5px;
}
.stMarkdown blockquote {
background-color: rgba(212, 175, 55, 0.1);
border-left: 5px solid #d4af37;
padding: 0.5rem 1rem;
margin-left: 0;
border-radius: 5px;
}
</style>
""", unsafe_allow_html=True)
# --- 3. Cached Functions for Heavy Lifting ---
@st.cache_resource
def load_rag_chain():
load_dotenv()
llm = ChatOpenAI(model="gpt-4o", temperature=0.1)
embeddings = SentenceTransformerEmbeddings(model_name="paraphrase-multilingual-mpnet-base-v2")
csv_filename = 'quran_multilingual_data.csv'
if not os.path.exists(csv_filename):
st.error(f"CRITICAL ERROR: The data file '{csv_filename}' was not found.")
st.stop()
df = pd.read_csv(csv_filename)
df.fillna("", inplace=True)
df['page_content'] = "Reference: " + df['reference'].astype(str) + "\n" + \
"Urdu Translation 1: " + df['translation_maududi'] + "\n" + \
"Urdu Translation 2: " + df['translation_qadri'] + "\n" + \
"English Translation: " + df['translation_english']
loader = DataFrameLoader(df, page_content_column='page_content')
documents = loader.load()
persist_directory = "./quran_multilingual_db"
if os.path.exists(persist_directory):
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
else:
with st.spinner("Creating new multilingual database. This might take a few minutes..."):
vectorstore = Chroma.from_documents(documents, embeddings, persist_directory=persist_directory)
retriever = vectorstore.as_retriever(search_kwargs={'k': 7})
# --- New and Improved Prompt Template for Better Formatting ---
prompt_template = """
You are an expert and respectful Quranic Assistant. Your task is to follow a strict, step-by-step process to answer the user's question based ONLY on the context, using precise Markdown formatting.
**Your Thought Process (Follow these steps internally):**
1. **Step 1: Identify Language.** Analyze the user's `Question` to determine if it is in English or Roman Urdu. This decision is critical and will control the language of your entire response.
2. **Step 2: Synthesize a Summary.** Based on the language identified in Step 1, carefully read the user's question and understand it and then read the `Context` and formulate a 3-4 line summary that directly answers the `Question`.
3. **Step 3: Format Detailed Points.** Create a numbered list of key points from the `Context`. For each point, you must follow these sub-rules precisely:
- **Sub-rule 3a:** If the identified language was English, you MUST use the "English Translation" from the context for the `Translation:` field.
- **Sub-rule 3b:** If the identified language was Roman Urdu, you MUST use one of the "Urdu Translation" texts from the context for the `Translation:` field.
- **Sub-rule 3c:** The `Explanation:` must be in the same language as the `Question`.
---
### Detailed Points
(Create a numbered list of key points below.)
1. **Translation:**
> (The appropriate translation text goes here, inside a blockquote.)
**Reference:** `[The verse reference, e.g., 2:153]`
**Explanation:** (Your 1-2 line explanation for this point goes here.)
2. **Translation:**
> (The second translation text goes here.)
**Reference:** `[The second verse reference]`
**Explanation:** (The explanation for the second point.)
(and so on...Try to give as much points as you can generate)
**Context from Database:**
{context}
**User's Question:**
{question}
**Your Final Answer (Strictly follow the Markdown format above):**
"""
prompt = ChatPromptTemplate.from_template(prompt_template)
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
return rag_chain
# --- 4. Main App Interface ---
# Load the RAG chain (fast due to caching)
rag_chain = load_rag_chain()
# Sidebar for information
with st.sidebar:
st.title("About Quranic Insight AI")
st.markdown("""
This is an AI-powered assistant designed to help you explore the teachings of the Holy Quran.
**How it works:**
1. Ask a question in English or Roman Urdu.
2. The AI searches through multiple translations of the Quran to find the most relevant verses.
3. It then uses a powerful language model to generate a structured and informative answer based on those verses.
**Data Sources:**
- Arabic Text: Tanzil.net
- Urdu Translations: Maududi & Tahir-ul-Qadri
- English Translation: Abdullah Yusuf Ali
""")
st.info("This is an experimental AI project. Always consult with a qualified Islamic scholar for definitive religious guidance.")
# Main page title
st.title("Quranic Insight AI | قرآنی معاون")
st.markdown("<p class='subtitle'>Your AI assistant for exploring the Quran</p>", unsafe_allow_html=True)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "As-salamu alaykum! How can I help you explore the Quran today?"}]
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("Ask a question about the Quran..."):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
with st.spinner("Analyzing verses..."):
response = rag_chain.invoke(prompt)
st.markdown(response, unsafe_allow_html=True)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response}) |