File size: 8,663 Bytes
b4be393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import streamlit as st
import pandas as pd
import os
from langchain_community.document_loaders import DataFrameLoader
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from dotenv import load_dotenv

# --- 1. Page Configuration ---
st.set_page_config(
    page_title="Quranic Insight AI",
    page_icon="🕋",
    layout="wide",
    initial_sidebar_state="expanded"
)

# --- 2. Custom CSS for Theming and Design ---
st.markdown("""

<style>

    @import url('https://fonts.googleapis.com/css2?family=Merriweather:wght@300;400;700&family=Amiri&display=swap');



    /* Main background with geometric pattern */

    .stApp {

        background-color: #1a1a1a; /* Dark Charcoal */

        background-image: linear-gradient(315deg, rgba(255, 255, 255, 0.02) 25%, transparent 25%),

                          linear-gradient(45deg, rgba(255, 255, 255, 0.02) 25%, transparent 25%);

        background-size: 20px 20px;

        color: #e0e0e0; /* Off-white text */

    }



    /* Main title font and color */

    h1 {

        font-family: 'Amiri', serif;

        color: #d4af37; /* Soft Gold */

        text-align: center;

        padding-top: 2rem;

    }



    /* Subtitle style */

    .subtitle {

        font-family: 'Merriweather', serif;

        color: #b0b0b0;

        text-align: center;

        font-size: 1.1rem;

    }

    

    /* Sidebar styling */

    .st-emotion-cache-16txtl3 {

        background-color: #212121;

    }



    /* Chat message styling */

    .st-emotion-cache-1c7y2kd { /* Chat message container */

        background-color: rgba(42, 42, 42, 0.8);

        border: 1px solid #d4af37;

        border-radius: 12px;

        margin-bottom: 1rem;

    }

    

    /* Input box styling */

    .st-emotion-cache-1jicfl2 {

        background-color: #2a2a2a;

    }



    /* Output formatting improvements */

    .stMarkdown h3 {

        color: #50c878; /* Mint Green for headings */

        border-bottom: 2px solid #d4af37;

        padding-bottom: 5px;

    }

    .stMarkdown blockquote {

        background-color: rgba(212, 175, 55, 0.1);

        border-left: 5px solid #d4af37;

        padding: 0.5rem 1rem;

        margin-left: 0;

        border-radius: 5px;

    }

</style>

""", unsafe_allow_html=True)


# --- 3. Cached Functions for Heavy Lifting ---
@st.cache_resource
def load_rag_chain():
    load_dotenv()
    
    llm = ChatOpenAI(model="gpt-4o", temperature=0.1)
    embeddings = SentenceTransformerEmbeddings(model_name="paraphrase-multilingual-mpnet-base-v2")

    csv_filename = 'quran_multilingual_data.csv'
    if not os.path.exists(csv_filename):
        st.error(f"CRITICAL ERROR: The data file '{csv_filename}' was not found.")
        st.stop()
    
    df = pd.read_csv(csv_filename)
    df.fillna("", inplace=True)

    df['page_content'] = "Reference: " + df['reference'].astype(str) + "\n" + \
                         "Urdu Translation 1: " + df['translation_maududi'] + "\n" + \
                         "Urdu Translation 2: " + df['translation_qadri'] + "\n" + \
                         "English Translation: " + df['translation_english']
    
    loader = DataFrameLoader(df, page_content_column='page_content')
    documents = loader.load()

    persist_directory = "./quran_multilingual_db"
    if os.path.exists(persist_directory):
        vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
    else:
        with st.spinner("Creating new multilingual database. This might take a few minutes..."):
            vectorstore = Chroma.from_documents(documents, embeddings, persist_directory=persist_directory)

    retriever = vectorstore.as_retriever(search_kwargs={'k': 7})
    
    # --- New and Improved Prompt Template for Better Formatting ---
    prompt_template = """

    You are an expert and respectful Quranic Assistant. Your task is to follow a strict, step-by-step process to answer the user's question based ONLY on the context, using precise Markdown formatting.



    **Your Thought Process (Follow these steps internally):**

1.  **Step 1: Identify Language.** Analyze the user's `Question` to determine if it is in English or Roman Urdu. This decision is critical and will control the language of your entire response.

2.  **Step 2: Synthesize a Summary.** Based on the language identified in Step 1, carefully read the user's question and understand it and then read the `Context` and formulate a 3-4 line summary that directly answers the `Question`.

3.  **Step 3: Format Detailed Points.** Create a numbered list of key points from the `Context`. For each point, you must follow these sub-rules precisely:

    -   **Sub-rule 3a:** If the identified language was English, you MUST use the "English Translation" from the context for the `Translation:` field.

    -   **Sub-rule 3b:** If the identified language was Roman Urdu, you MUST use one of the "Urdu Translation" texts from the context for the `Translation:` field.

    -   **Sub-rule 3c:** The `Explanation:` must be in the same language as the `Question`.



    ---



    ### Detailed Points

    (Create a numbered list of key points below.)



    1.  **Translation:**

        > (The appropriate translation text goes here, inside a blockquote.)

        **Reference:** `[The verse reference, e.g., 2:153]`

        

        **Explanation:** (Your 1-2 line explanation for this point goes here.)



    2.  **Translation:**

        > (The second translation text goes here.)

        **Reference:** `[The second verse reference]`

        

        **Explanation:** (The explanation for the second point.)

    

    (and so on...Try to give as much points as you can generate)



    **Context from Database:**

    {context}



    **User's Question:**

    {question}



    **Your Final Answer (Strictly follow the Markdown format above):**

    """
    prompt = ChatPromptTemplate.from_template(prompt_template)

    rag_chain = (
        {"context": retriever, "question": RunnablePassthrough()}
        | prompt
        | llm
        | StrOutputParser()
    )
    return rag_chain

# --- 4. Main App Interface ---

# Load the RAG chain (fast due to caching)
rag_chain = load_rag_chain()

# Sidebar for information
with st.sidebar:
    st.title("About Quranic Insight AI")
    st.markdown("""

    This is an AI-powered assistant designed to help you explore the teachings of the Holy Quran. 

    

    **How it works:**

    1.  Ask a question in English or Roman Urdu.

    2.  The AI searches through multiple translations of the Quran to find the most relevant verses.

    3.  It then uses a powerful language model to generate a structured and informative answer based on those verses.

    

    **Data Sources:**

    - Arabic Text: Tanzil.net

    - Urdu Translations: Maududi & Tahir-ul-Qadri

    - English Translation: Abdullah Yusuf Ali

    """)
    st.info("This is an experimental AI project. Always consult with a qualified Islamic scholar for definitive religious guidance.")

# Main page title
st.title("Quranic Insight AI | قرآنی معاون")
st.markdown("<p class='subtitle'>Your AI assistant for exploring the Quran</p>", unsafe_allow_html=True)

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = [{"role": "assistant", "content": "As-salamu alaykum! How can I help you explore the Quran today?"}]

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input("Ask a question about the Quran..."):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        with st.spinner("Analyzing verses..."):
            response = rag_chain.invoke(prompt)
            st.markdown(response, unsafe_allow_html=True)
    
    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})