Spaces:
Paused
Paused
import torch | |
from transformers import pipeline | |
device="cpu" | |
pipe = pipeline( | |
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device | |
) | |
def translate(audio): | |
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"}) | |
return outputs["text"] | |
from transformers import BarkModel | |
from transformers import AutoProcessor | |
model = BarkModel.from_pretrained("suno/bark-small") | |
processor = AutoProcessor.from_pretrained("suno/bark") | |
model = model.to(device) | |
synthesised_rate = model.generation_config.sample_rate | |
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"): | |
inputs = processor(text_prompt, voice_preset=voice_preset) | |
speech_output = model.generate(**inputs.to(device),pad_token_id=10000) | |
#print(speech_output[0].cpu().numpy()) | |
return speech_output | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
return 16000, synthesised_speech | |
import numpy as np | |
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"): | |
translated_text = translate(audio) | |
#print(translated_text) | |
synthesised_speech = synthesise(translated_text,voice_preset) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
#print(synthesised_speech) | |
return synthesised_rate , synthesised_speech | |
def speech_to_speech_translation_fix(audio,voice_preset="v2/zh_speaker_1"): | |
synthesised_rate,synthesised_speech = speech_to_speech_translation(audio,voice_preset) | |
return synthesised_rate,synthesised_speech.T | |
title = "Multilanguage to Chinese(mandarin) Cascaded STST" | |
description = """ | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in Multilanguage to target speech in Chinese(mandarin). Demo uses OpenAI's [Whisper arge-v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and a suno/bark[bark-small](https://huggingface.co/suno/bark) model for text-to-speech: | |
 | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation_fix, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation_fix, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() |