|
# π« StarCoder |
|
|
|
This is a C++ example running π« StarCoder inference using the [ggml](https://github.com/ggerganov/ggml) library. |
|
|
|
The program runs on the CPU - no video card is required. |
|
|
|
The example supports the following π« StarCoder models: |
|
|
|
- `bigcode/starcoder` |
|
- `bigcode/gpt_bigcode-santacoder` aka the smol StarCoder |
|
|
|
Sample performance on MacBook M1 Pro: |
|
|
|
TODO |
|
|
|
|
|
Sample output: |
|
|
|
``` |
|
$ ./bin/starcoder -h |
|
usage: ./bin/starcoder [options] |
|
|
|
options: |
|
-h, --help show this help message and exit |
|
-s SEED, --seed SEED RNG seed (default: -1) |
|
-t N, --threads N number of threads to use during computation (default: 8) |
|
-p PROMPT, --prompt PROMPT |
|
prompt to start generation with (default: random) |
|
-n N, --n_predict N number of tokens to predict (default: 200) |
|
--top_k N top-k sampling (default: 40) |
|
--top_p N top-p sampling (default: 0.9) |
|
--temp N temperature (default: 1.0) |
|
-b N, --batch_size N batch size for prompt processing (default: 8) |
|
-m FNAME, --model FNAME |
|
model path (default: models/starcoder-117M/ggml-model.bin) |
|
|
|
$ ./bin/starcoder -m ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin -p "def fibonnaci(" -t 4 --top_k 0 --top_p 0.95 --temp 0.2 |
|
main: seed = 1683881276 |
|
starcoder_model_load: loading model from '../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin' |
|
starcoder_model_load: n_vocab = 49280 |
|
starcoder_model_load: n_ctx = 2048 |
|
starcoder_model_load: n_embd = 2048 |
|
starcoder_model_load: n_head = 16 |
|
starcoder_model_load: n_layer = 24 |
|
starcoder_model_load: ftype = 3 |
|
starcoder_model_load: ggml ctx size = 1794.90 MB |
|
starcoder_model_load: memory size = 768.00 MB, n_mem = 49152 |
|
starcoder_model_load: model size = 1026.83 MB |
|
main: prompt: 'def fibonnaci(' |
|
main: number of tokens in prompt = 7, first 8 tokens: 563 24240 78 2658 64 2819 7 |
|
|
|
def fibonnaci(n): |
|
if n == 0: |
|
return 0 |
|
elif n == 1: |
|
return 1 |
|
else: |
|
return fibonacci(n-1) + fibonacci(n-2) |
|
|
|
print(fibo(10)) |
|
|
|
main: mem per token = 9597928 bytes |
|
main: load time = 480.43 ms |
|
main: sample time = 26.21 ms |
|
main: predict time = 3987.95 ms / 19.36 ms per token |
|
main: total time = 4580.56 ms |
|
``` |
|
|
|
## Quick start |
|
```bash |
|
git clone https://github.com/ggerganov/ggml |
|
cd ggml |
|
|
|
# Install Python dependencies |
|
python3 -m pip install -r requirements.txt |
|
|
|
# Convert HF model to ggml |
|
python examples/starcoder/convert-hf-to-ggml.py bigcode/gpt_bigcode-santacoder |
|
|
|
# Build ggml + examples |
|
mkdir build && cd build |
|
cmake .. && make -j4 starcoder starcoder-quantize |
|
|
|
# quantize the model |
|
./bin/starcoder-quantize ../models/bigcode/gpt_bigcode-santacoder-ggml.bin ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin 3 |
|
|
|
# run inference |
|
./bin/starcoder -m ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin -p "def fibonnaci(" --top_k 0 --top_p 0.95 --temp 0.2 |
|
``` |
|
|
|
|
|
## Downloading and converting the original models (π« StarCoder) |
|
|
|
You can download the original model and convert it to `ggml` format using the script `convert-hf-to-ggml.py`: |
|
|
|
``` |
|
# Convert HF model to ggml |
|
python examples/starcoder/convert-hf-to-ggml.py bigcode/gpt_bigcode-santacoder |
|
``` |
|
|
|
This conversion requires that you have python and Transformers installed on your computer. |
|
|
|
## Quantizing the models |
|
|
|
You can also try to quantize the `ggml` models via 4-bit integer quantization. |
|
|
|
``` |
|
# quantize the model |
|
./bin/starcoder-quantize ../models/bigcode/gpt_bigcode-santacoder-ggml.bin ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin 3 |
|
``` |
|
|
|
| Model | Original size | Quantized size | Quantization type | |
|
| --- | --- | --- | --- | |
|
| `bigcode/gpt_bigcode-santacoder` | 5396.45 MB | 1026.83 MB | 4-bit integer (q4_1) | |
|
| `bigcode/starcoder` | 71628.23 MB | 13596.23 MB | 4-bit integer (q4_1) | |
|
|