lc10934's picture
Trained on syssec-utd/segmentation-py313-pylingual-v2-tokenized using syssec-utd/py313-pylingual-v1.1-mlm
ffc4a74 verified
---
library_name: transformers
base_model: syssec-utd/py313-pylingual-v1.1-mlm
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: py313-pylingual-v1.1-segmenter
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# py313-pylingual-v1.1-segmenter
This model is a fine-tuned version of [syssec-utd/py313-pylingual-v1.1-mlm](https://huggingface.co/syssec-utd/py313-pylingual-v1.1-mlm) on the syssec-utd/segmentation-py313-pylingual-v2-tokenized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0008
- Precision: 0.9982
- Recall: 0.9982
- F1: 0.9982
- Accuracy: 0.9997
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- total_train_batch_size: 144
- total_eval_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.008 | 1.0 | 32216 | 0.0011 | 0.9985 | 0.9980 | 0.9982 | 0.9996 |
| 0.0044 | 2.0 | 64432 | 0.0008 | 0.9982 | 0.9982 | 0.9982 | 0.9997 |
### Framework versions
- Transformers 4.54.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.2