qianxiao1111's picture
upgrade: add benchmarks eval
2a26d3b
raw
history blame
16.2 kB
#!/usr/bin/env python3
import argparse
import fnmatch
import json
import os
import pdb
import pickle
import re
import sqlite3
from typing import Dict, List, Tuple
import openai
import pandas as pd
import sqlparse
from tqdm import tqdm
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
import os
from openai import AzureOpenAI
def new_directory(path):
if not os.path.exists(path):
os.makedirs(path)
def load_json(data_path):
with open(data_path, "r") as f:
datas = json.load(f)
return datas
def get_db_schemas(bench_root: str, db_name: str) -> Dict[str, str]:
"""
Read an sqlite file, and return the CREATE commands for each of the tables in the database.
"""
asdf = 'database' if bench_root == 'spider' else 'databases'
with sqlite3.connect(f'file:{bench_root}/{asdf}/{db_name}/{db_name}.sqlite?mode=ro', uri=True) as conn:
# conn.text_factory = bytes
cursor = conn.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
tables = cursor.fetchall()
schemas = {}
for table in tables:
cursor.execute("SELECT sql FROM sqlite_master WHERE type='table' AND name='{}';".format(table[0]))
schemas[table[0]] = cursor.fetchone()[0]
return schemas
def nice_look_table(column_names: list, values: list):
rows = []
# Determine the maximum width of each column
widths = [max(len(str(value[i])) for value in values + [column_names]) for i in range(len(column_names))]
# Print the column names
header = ''.join(f'{column.rjust(width)} ' for column, width in zip(column_names, widths))
# print(header)
# Print the values
for value in values:
row = ''.join(f'{str(v).rjust(width)} ' for v, width in zip(value, widths))
rows.append(row)
rows = "\n".join(rows)
final_output = header + '\n' + rows
return final_output
def generate_schema_prompt(db_path, num_rows=None):
# extract create ddls
'''
:param root_place:
:param db_name:
:return:
'''
full_schema_prompt_list = []
conn = sqlite3.connect(db_path)
# Create a cursor object
cursor = conn.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table'")
tables = cursor.fetchall()
schemas = {}
for table in tables:
if table == 'sqlite_sequence':
continue
cursor.execute("SELECT sql FROM sqlite_master WHERE type='table' AND name='{}';".format(table[0]))
create_prompt = cursor.fetchone()[0]
schemas[table[0]] = create_prompt
if num_rows:
cur_table = table[0]
if cur_table in ['order', 'by', 'group']:
cur_table = "`{}`".format(cur_table)
cursor.execute("SELECT * FROM {} LIMIT {}".format(cur_table, num_rows))
column_names = [description[0] for description in cursor.description]
values = cursor.fetchall()
rows_prompt = nice_look_table(column_names=column_names, values=values)
verbose_prompt = "/* \n {} example rows: \n SELECT * FROM {} LIMIT {}; \n {} \n */".format(num_rows, cur_table, num_rows, rows_prompt)
schemas[table[0]] = "{} \n {}".format(create_prompt, verbose_prompt)
for k, v in schemas.items():
full_schema_prompt_list.append(v)
schema_prompt = "\n\n".join(full_schema_prompt_list)
return schema_prompt
def generate_comment_prompt(question, knowledge=None):
pattern_prompt_no_kg = "-- Using valid SQLite, answer the following questions for the tables provided above."
pattern_prompt_kg = "-- Using valid SQLite and understading External Knowledge, answer the following questions for the tables provided above."
# question_prompt = "-- {}".format(question) + '\n SELECT '
question_prompt = "-- {}".format(question)
knowledge_prompt = "-- External Knowledge: {}".format(knowledge)
if not knowledge:
result_prompt = pattern_prompt_no_kg + '\n' + question_prompt
else:
result_prompt = knowledge_prompt + '\n' + pattern_prompt_kg + '\n' + question_prompt
return result_prompt
def cot_wizard():
cot = "\nGenerate the SQL after thinking step by step: "
# cot = "\nCarefully reason through each step to generate the SQL query:"
return cot
def few_shot():
ini_table = "CREATE TABLE singer\n(\n singer_id TEXT not null\n primary key,\n nation TEXT not null,\n sname TEXT null,\n dname TEXT null,\n cname TEXT null,\n age INTEGER not null,\n year INTEGER not null,\n birth_year INTEGER null,\n salary REAL null,\n city TEXT null,\n phone_number INTEGER null,\n-- tax REAL null,\n)"
ini_prompt = "-- External Knowledge: age = year - birth_year;\n-- Using valid SQLite and understading External Knowledge, answer the following questions for the tables provided above.\n-- How many singers in USA who is older than 27?\nThe final SQL is: Let's think step by step."
ini_cot_result = "1. referring to external knowledge, we need to filter singers 'by year' - 'birth_year' > 27; 2. we should find out the singers of step 1 in which nation = 'US', 3. use COUNT() to count how many singers. Finally the SQL is: SELECT COUNT(*) FROM singer WHERE year - birth_year > 27;</s>"
one_shot_demo = ini_table + '\n' + ini_prompt + '\n' + ini_cot_result
return one_shot_demo
def few_shot_no_kg():
ini_table = "CREATE TABLE singer\n(\n singer_id TEXT not null\n primary key,\n nation TEXT not null,\n sname TEXT null,\n dname TEXT null,\n cname TEXT null,\n age INTEGER not null,\n year INTEGER not null,\n age INTEGER null,\n salary REAL null,\n city TEXT null,\n phone_number INTEGER null,\n-- tax REAL null,\n)"
ini_prompt = "-- External Knowledge:\n-- Using valid SQLite and understading External Knowledge, answer the following questions for the tables provided above.\n-- How many singers in USA who is older than 27?\nThe final SQL is: Let's think step by step."
ini_cot_result = "1. 'older than 27' refers to age > 27 in SQL; 2. we should find out the singers of step 1 in which nation = 'US', 3. use COUNT() to count how many singers. Finally the SQL is: SELECT COUNT(*) FROM singer WHERE age > 27;</s>"
one_shot_demo = ini_table + '\n' + ini_prompt + '\n' + ini_cot_result
return one_shot_demo
def generate_combined_prompts_one(db_path, question, knowledge=None):
schema_prompt = generate_schema_prompt(db_path, num_rows=None) # This is the entry to collect values
comment_prompt = generate_comment_prompt(question, knowledge)
combined_prompts = schema_prompt + '\n\n' + comment_prompt + cot_wizard() + '\nSELECT '
# combined_prompts = few_shot_no_kg() + '\n\n' + schema_prompt + '\n\n' + comment_prompt
# print("="*100)
# print(combined_prompts)
# print("="*100)
return combined_prompts
def quota_giveup(e):
return isinstance(e, openai.error.RateLimitError) and "quota" in str(e)
def connect_gpt(engine, prompt, max_tokens, temperature, stop):
try:
result = openai.Completion.create(engine=engine, prompt=prompt, max_tokens=max_tokens, temperature=temperature, stop=stop)
except Exception as e:
result = 'error:{}'.format(e)
return result
def llm_generate_result(model_name_or_path, gpus_num, prompt_ls, args=None):
print("model", model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
print(
"load tokenizer {} from {} over.".format(
tokenizer.__class__, model_name_or_path
)
)
llm_args = {
"model": model_name_or_path,
"gpu_memory_utilization": 0.95,
"trust_remote_code": True,
"tensor_parallel_size": gpus_num,
"dtype": "half",
"max_model_len": 8192,
"enforce_eager": True,
}
llm = LLM(**llm_args)
sampling_params = SamplingParams(
temperature=0,
max_tokens=1024,
top_p=0.95,
stop_token_ids=[tokenizer.eos_token_id],
)
messages_list = []
num = 0
for prompt in tqdm(prompt_ls, desc="trans prompt"):
message = [{"role": "user", "content": prompt}]
messages_list.append(
tokenizer.apply_chat_template(
message, tokenize=False, add_generation_prompt=True
)
)
tk = tokenizer.apply_chat_template(
message, tokenize=True, add_generation_prompt=True
)
if len(tk) > 7168:
print("="*100)
# print(tk)
num += 1
# print("="*100, "cut nums: ", num)
outputs = llm.generate(messages_list, sampling_params=sampling_params)
generated_res = []
ori_generated_res = []
for i, output in enumerate(tqdm(outputs)):
text = output.outputs[0].text
ori_generated_res.append(text)
sql = parser_sql(text)
generated_res.append(sql)
return generated_res, ori_generated_res
def gpt_generate_result(model_name_or_path, gpus_num, prompt_ls, args=None):
client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-07-01-preview",
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
max_retries=3
)
generated_res = []
ori_generated_res = []
output_name = os.path.join(args.data_output_path, f'{args.eval_data_name}_{args.mode}_{args.is_use_knowledge}_temp.json')
unparser_name = os.path.join(args.data_output_path,f'{args.eval_data_name}_{args.mode}_{args.is_use_knowledge}_unparser_temp.json')
if os.path.exists(unparser_name):
ori_generated_res_dict = load_json(unparser_name)
generated_res_dict = load_json(output_name)
generated_res = [v for k,v in generated_res_dict.items()]
ori_generated_res = [v for k,v in ori_generated_res_dict.items()]
for i in tqdm(range(len(prompt_ls))):
if i < len(generated_res):
continue
prompt = prompt_ls[i]
response = client.chat.completions.create(
model="gpt-4o",
# model="gpt-4o-mini",
messages=[
# {"role": "system", "content": "Assistant is a large language model trained by OpenAI."},
{"role": "user", "content": prompt}
],
# stop=["\nObservation:"],
temperature=0.01,
timeout=40
)
generated_message = response.choices[0].message
text = generated_message.content
ori_generated_res.append(text)
sql = parser_sql(text)
generated_res.append(sql)
if i % 50 == 0:
generate_sql_file(sql_lst=generated_res, output_path=output_name)
generate_sql_file(sql_lst=ori_generated_res, output_path=unparser_name) # 未解析的结果保存
return generated_res, ori_generated_res
def parser_sql(text):
text = text.strip()
sql_query_1 = re.search(r'```sql(.*?)```', text, re.DOTALL)
sql_query_2 = re.search(r'```(.*?)```', text, re.DOTALL)
if sql_query_1:
extracted_sql = sql_query_1.group(1).strip()
elif sql_query_2:
extracted_sql = sql_query_2.group(1).strip()
else:
top_word = text.split(" ")[0]
if not top_word.lower().startswith("select"):
extracted_sql = "SELECT " + text
else:
extracted_sql = text
extracted_sql_ls = extracted_sql.split("\n")
extracted_sql_ls = [s for s in extracted_sql_ls if not s.lower().startswith("-- ") ]
extracted_sql = "\n".join(extracted_sql_ls)
return extracted_sql
def collect_response_from_gpt(model_path, gpus_num, db_path_list, question_list, knowledge_list=None, args=None):
'''
:param db_path: str
:param question_list: []
:return: dict of responses collected from llm
'''
responses_dict = {}
response_list = []
prompt_ls = []
for i in tqdm(range(len(question_list)), desc="get prompt"):
# print('--------------------- processing {}th question ---------------------'.format(i))
# print('the question is: {}'.format(question))
question = question_list[i]
if knowledge_list:
cur_prompt = generate_combined_prompts_one(db_path=db_path_list[i], question=question, knowledge=knowledge_list[i])
else:
cur_prompt = generate_combined_prompts_one(db_path=db_path_list[i], question=question)
prompt_ls.append(cur_prompt)
if args.use_gpt_api:
outputs_sql, ori_outputs_text = gpt_generate_result(model_path, gpus_num, prompt_ls, args)
else:
outputs_sql, ori_outputs_text = llm_generate_result(model_path, gpus_num, prompt_ls, args)
for i in tqdm(range(len(question_list)), desc="postprocess result"):
question = question_list[i]
sql = outputs_sql[i]
db_id = db_path_list[i].split('/')[-1].split('.sqlite')[0]
sql = sql + '\t----- bird -----\t' + db_id # to avoid unpredicted \t appearing in codex results
response_list.append(sql)
return response_list, ori_outputs_text
def question_package(data_json, knowledge=False):
question_list = []
for data in data_json:
question_list.append(data['question'])
return question_list
def knowledge_package(data_json, knowledge=False):
knowledge_list = []
for data in data_json:
knowledge_list.append(data['evidence'])
return knowledge_list
def decouple_question_schema(datasets, db_root_path):
question_list = []
db_path_list = []
knowledge_list = []
for i, data in enumerate(datasets):
question_list.append(data['question'])
cur_db_path = os.path.join(db_root_path, data['db_id'], f"{data['db_id']}.sqlite")
db_path_list.append(cur_db_path)
knowledge_list.append(data['evidence'])
return question_list, db_path_list, knowledge_list
def generate_sql_file(sql_lst, output_path=None):
result = {}
for i, sql in enumerate(sql_lst):
result[i] = sql
if output_path:
directory_path = os.path.dirname(output_path)
new_directory(directory_path)
json.dump(result, open(output_path, 'w'), indent=4)
return result
def generate_main(eval_data, args):
question_list, db_path_list, knowledge_list = decouple_question_schema(datasets=eval_data, db_root_path=args.db_root_path)
assert len(question_list) == len(db_path_list) == len(knowledge_list)
if args.use_knowledge == 'True':
responses, ori_outputs_text = collect_response_from_gpt(model_path=args.model_path, gpus_num=args.gpus_num, db_path_list=db_path_list, question_list=question_list, knowledge_list=knowledge_list, args=args)
else:
responses, ori_outputs_text = collect_response_from_gpt(model_path=args.model_path, gpus_num=args.gpus_num, db_path_list=db_path_list, question_list=question_list, knowledge_list=None, args=args)
if args.chain_of_thought == 'True':
output_name = os.path.join(args.data_output_path, f'{args.eval_data_name}_{args.mode}_cot.json')
else:
output_name = os.path.join(args.data_output_path, f'{args.eval_data_name}_{args.mode}_{args.is_use_knowledge}.json')
unparser_name = os.path.join(args.data_output_path,f'{args.eval_data_name}_{args.mode}_{args.is_use_knowledge}_unparser.json')
# pdb.set_trace()
generate_sql_file(sql_lst=responses, output_path=output_name)
generate_sql_file(sql_lst=ori_outputs_text, output_path=unparser_name) # 未解析的结果保存
print('successfully collect results from {} for {} evaluation; Use knowledge: {}; Use COT: {}'.format(args.model_path, args.mode, args.use_knowledge, args.chain_of_thought))
print(f'output: {output_name}')
# 返回推理数据保存路径
return output_name