DataSynthis_ML_JobTask
A powerful movie recommendation system using collaborative filtering and matrix factorization techniques on the MovieLens 100k dataset.
Model Description
This model provides personalized movie recommendations using two state-of-the-art algorithms:
- Collaborative Filtering (CF): Item-based similarity using cosine similarity
- Matrix Factorization (SVD): Singular Value Decomposition for dimensionality reduction
Dataset
- MovieLens 100k: 100,000 ratings from 943 users on 1,682 movies
- User ID Range: 1-943
- Movie Count: 1,682 unique movies
- Rating Scale: 1-5 stars
Usage
Python
from model import predict
# Get recommendations using SVD (default)
recommendations = predict(user_id=1, n_recommendations=10, method="svd")
# Get recommendations using collaborative filtering
recommendations = predict(user_id=1, n_recommendations=10, method="cf")
print(recommendations)
Parameters
- user_id (int): User ID between 1-943 (required)
- n_recommendations (int): Number of recommendations between 1-20 (default: 10)
- method (str): "svd" for matrix factorization or "cf" for collaborative filtering (default: "svd")
Output
Returns a list of dictionaries with movie recommendations:
[
{
"movie_id": 50,
"title": "Star Wars (1977)",
"predicted_rating": 4.5
},
{
"movie_id": 181,
"title": "Return of the Jedi (1983)",
"predicted_rating": 4.3
}
]
Model Performance
- SVD Method: Fast predictions with good accuracy using 20 components
- Collaborative Filtering: More interpretable, based on item similarity
- Cold Start Handling: Graceful error handling for unknown users
Technical Details
- Framework: Scikit-learn
- Algorithms: TruncatedSVD, Cosine Similarity
- Data Processing: Pandas for efficient matrix operations
- Memory Efficient: Optimized for large-scale recommendation tasks
Installation
pip install pandas numpy scikit-learn
Training
The model is pre-trained on the MovieLens 100k dataset. To retrain:
from model import MovieRecommender
model = MovieRecommender()
model.load_data()
model.train()
model.save_model("movie_recommender.pkl")
Citation
@misc{datasynthis_ml_jobtask,
title={DataSynthis ML JobTask: Movie Recommendation System},
author={tasdid25},
year={2025},
url={https://huggingface.co/tasdid25/DataSynthis_ML_JobTask}
}
License
MIT License - see LICENSE file for details.
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support