wav2vec2-dataset-vios

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the vivos_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5423
  • Wer: 0.4075

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.0963 1.1 400 1.1336 0.7374
0.6576 2.2 800 0.4716 0.3727
0.4099 3.3 1200 0.3907 0.3100
0.3332 4.4 1600 0.3735 0.2766
0.2976 5.49 2000 0.3932 0.2801
0.2645 6.59 2400 0.3628 0.2542
0.2395 7.69 2800 0.3702 0.2734
0.2208 8.79 3200 0.3667 0.2467
0.1974 9.89 3600 0.3688 0.2398
0.1772 10.99 4000 0.3819 0.2457
0.1695 12.09 4400 0.3840 0.2451
0.319 13.19 4800 0.6531 0.4084
0.7305 14.29 5200 0.9883 0.6348
0.5787 15.38 5600 0.5260 0.3063
0.8558 16.48 6000 1.2870 0.7692
1.155 17.58 6400 1.0568 0.6353
0.8393 18.68 6800 0.7360 0.4486
0.6094 19.78 7200 0.6072 0.4108
0.5346 20.88 7600 0.5749 0.4095
0.5073 21.98 8000 0.5588 0.4056
0.4859 23.08 8400 0.5475 0.4015
0.475 24.18 8800 0.5430 0.4011
0.4683 25.27 9200 0.5400 0.3990
0.4673 26.37 9600 0.5407 0.4011
0.4665 27.47 10000 0.5408 0.3992
0.4703 28.57 10400 0.5420 0.4070
0.4709 29.67 10800 0.5423 0.4075

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.10.3
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support