tclong commited on
Commit
935c98b
·
1 Parent(s): 67b5c82

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - vivos_dataset
7
+ model-index:
8
+ - name: wav2vec2-dataset-vios
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-dataset-vios
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the vivos_dataset dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5423
20
+ - Wer: 0.4075
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 30
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
55
+ | 5.0963 | 1.1 | 400 | 1.1336 | 0.7374 |
56
+ | 0.6576 | 2.2 | 800 | 0.4716 | 0.3727 |
57
+ | 0.4099 | 3.3 | 1200 | 0.3907 | 0.3100 |
58
+ | 0.3332 | 4.4 | 1600 | 0.3735 | 0.2766 |
59
+ | 0.2976 | 5.49 | 2000 | 0.3932 | 0.2801 |
60
+ | 0.2645 | 6.59 | 2400 | 0.3628 | 0.2542 |
61
+ | 0.2395 | 7.69 | 2800 | 0.3702 | 0.2734 |
62
+ | 0.2208 | 8.79 | 3200 | 0.3667 | 0.2467 |
63
+ | 0.1974 | 9.89 | 3600 | 0.3688 | 0.2398 |
64
+ | 0.1772 | 10.99 | 4000 | 0.3819 | 0.2457 |
65
+ | 0.1695 | 12.09 | 4400 | 0.3840 | 0.2451 |
66
+ | 0.319 | 13.19 | 4800 | 0.6531 | 0.4084 |
67
+ | 0.7305 | 14.29 | 5200 | 0.9883 | 0.6348 |
68
+ | 0.5787 | 15.38 | 5600 | 0.5260 | 0.3063 |
69
+ | 0.8558 | 16.48 | 6000 | 1.2870 | 0.7692 |
70
+ | 1.155 | 17.58 | 6400 | 1.0568 | 0.6353 |
71
+ | 0.8393 | 18.68 | 6800 | 0.7360 | 0.4486 |
72
+ | 0.6094 | 19.78 | 7200 | 0.6072 | 0.4108 |
73
+ | 0.5346 | 20.88 | 7600 | 0.5749 | 0.4095 |
74
+ | 0.5073 | 21.98 | 8000 | 0.5588 | 0.4056 |
75
+ | 0.4859 | 23.08 | 8400 | 0.5475 | 0.4015 |
76
+ | 0.475 | 24.18 | 8800 | 0.5430 | 0.4011 |
77
+ | 0.4683 | 25.27 | 9200 | 0.5400 | 0.3990 |
78
+ | 0.4673 | 26.37 | 9600 | 0.5407 | 0.4011 |
79
+ | 0.4665 | 27.47 | 10000 | 0.5408 | 0.3992 |
80
+ | 0.4703 | 28.57 | 10400 | 0.5420 | 0.4070 |
81
+ | 0.4709 | 29.67 | 10800 | 0.5423 | 0.4075 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.11.3
87
+ - Pytorch 1.10.0+cu113
88
+ - Datasets 1.18.3
89
+ - Tokenizers 0.10.3