CodeLlama-Edge-1.5B
CodeLlama-Edge-1.5B
is an edge-optimized variant of the CodeLlama series, designed to run efficiently on mobile and embedded devices using quantized or distilled formats.
Model Description
- Model Type: Causal Language Model
- Base Model: CodeLlama
- Optimizations: Quantization-aware training, pruning, and edge-device compatibility
- Parameters: 1.5 Billion
- Intended Use: On-device coding assistance, embedded systems, low-power environments
Features
- Token-efficient for code generation
- Ideal for IDEs, mobile apps, IoT dev tools
- Low memory and compute footprint
Example Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tommytracx/CodeLlama-Edge-1.5B")
model = AutoModelForCausalLM.from_pretrained("tommytracx/CodeLlama-Edge-1.5B")
input_text = "def quicksort(arr):"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
License
Apache 2.0
Author
- Maintained by: tommytracx
- Downloads last month
- 3
Hardware compatibility
Log In
to view the estimation
4-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support