|
import argparse |
|
import math |
|
import os |
|
import toml |
|
import json |
|
import time |
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from safetensors.torch import save_file |
|
from accelerate import Accelerator, PartialState |
|
from tqdm import tqdm |
|
from PIL import Image |
|
from transformers import CLIPTextModelWithProjection, T5EncoderModel |
|
|
|
from . import sd3_models, sd3_utils, strategy_base, train_util |
|
from .device_utils import init_ipex, clean_memory_on_device |
|
from comfy.utils import ProgressBar |
|
init_ipex() |
|
|
|
|
|
|
|
|
|
|
|
from .utils import setup_logging |
|
|
|
setup_logging() |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
from . import sd3_models, sd3_utils, strategy_base, train_util |
|
|
|
|
|
def save_models( |
|
ckpt_path: str, |
|
mmdit: Optional[sd3_models.MMDiT], |
|
vae: Optional[sd3_models.SDVAE], |
|
clip_l: Optional[CLIPTextModelWithProjection], |
|
clip_g: Optional[CLIPTextModelWithProjection], |
|
t5xxl: Optional[T5EncoderModel], |
|
sai_metadata: Optional[dict], |
|
save_dtype: Optional[torch.dtype] = None, |
|
): |
|
r""" |
|
Save models to checkpoint file. Only supports unified checkpoint format. |
|
""" |
|
|
|
state_dict = {} |
|
|
|
def update_sd(prefix, sd): |
|
for k, v in sd.items(): |
|
key = prefix + k |
|
if save_dtype is not None: |
|
v = v.detach().clone().to("cpu").to(save_dtype) |
|
state_dict[key] = v |
|
|
|
update_sd("model.diffusion_model.", mmdit.state_dict()) |
|
update_sd("first_stage_model.", vae.state_dict()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
save_file(state_dict, ckpt_path, metadata=sai_metadata) |
|
|
|
if clip_l is not None: |
|
clip_l_path = ckpt_path.replace(".safetensors", "_clip_l.safetensors") |
|
save_file(clip_l.state_dict(), clip_l_path) |
|
if clip_g is not None: |
|
clip_g_path = ckpt_path.replace(".safetensors", "_clip_g.safetensors") |
|
save_file(clip_g.state_dict(), clip_g_path) |
|
if t5xxl is not None: |
|
t5xxl_path = ckpt_path.replace(".safetensors", "_t5xxl.safetensors") |
|
t5xxl_state_dict = t5xxl.state_dict() |
|
|
|
|
|
shared_weight = t5xxl_state_dict["shared.weight"] |
|
shared_weight_copy = shared_weight.detach().clone() |
|
t5xxl_state_dict["shared.weight"] = shared_weight_copy |
|
|
|
save_file(t5xxl_state_dict, t5xxl_path) |
|
|
|
|
|
def save_sd3_model_on_train_end( |
|
args: argparse.Namespace, |
|
save_dtype: torch.dtype, |
|
epoch: int, |
|
global_step: int, |
|
clip_l: Optional[CLIPTextModelWithProjection], |
|
clip_g: Optional[CLIPTextModelWithProjection], |
|
t5xxl: Optional[T5EncoderModel], |
|
mmdit: sd3_models.MMDiT, |
|
vae: sd3_models.SDVAE, |
|
): |
|
def sd_saver(ckpt_file, epoch_no, global_step): |
|
sai_metadata = train_util.get_sai_model_spec( |
|
None, args, False, False, False, is_stable_diffusion_ckpt=True, sd3=mmdit.model_type |
|
) |
|
save_models(ckpt_file, mmdit, vae, clip_l, clip_g, t5xxl, sai_metadata, save_dtype) |
|
|
|
train_util.save_sd_model_on_train_end_common(args, True, True, epoch, global_step, sd_saver, None) |
|
|
|
|
|
|
|
|
|
def save_sd3_model_on_epoch_end_or_stepwise( |
|
args: argparse.Namespace, |
|
on_epoch_end: bool, |
|
accelerator, |
|
save_dtype: torch.dtype, |
|
epoch: int, |
|
num_train_epochs: int, |
|
global_step: int, |
|
clip_l: Optional[CLIPTextModelWithProjection], |
|
clip_g: Optional[CLIPTextModelWithProjection], |
|
t5xxl: Optional[T5EncoderModel], |
|
mmdit: sd3_models.MMDiT, |
|
vae: sd3_models.SDVAE, |
|
): |
|
def sd_saver(ckpt_file, epoch_no, global_step): |
|
sai_metadata = train_util.get_sai_model_spec( |
|
None, args, False, False, False, is_stable_diffusion_ckpt=True, sd3=mmdit.model_type |
|
) |
|
save_models(ckpt_file, mmdit, vae, clip_l, clip_g, t5xxl, sai_metadata, save_dtype) |
|
|
|
train_util.save_sd_model_on_epoch_end_or_stepwise_common( |
|
args, |
|
on_epoch_end, |
|
accelerator, |
|
True, |
|
True, |
|
epoch, |
|
num_train_epochs, |
|
global_step, |
|
sd_saver, |
|
None, |
|
) |
|
|
|
|
|
def add_sd3_training_arguments(parser: argparse.ArgumentParser): |
|
parser.add_argument( |
|
"--clip_l", |
|
type=str, |
|
required=False, |
|
help="CLIP-L model path. if not specified, use ckpt's state_dict / CLIP-Lモデルのパス。指定しない場合はckptのstate_dictを使用", |
|
) |
|
parser.add_argument( |
|
"--clip_g", |
|
type=str, |
|
required=False, |
|
help="CLIP-G model path. if not specified, use ckpt's state_dict / CLIP-Gモデルのパス。指定しない場合はckptのstate_dictを使用", |
|
) |
|
parser.add_argument( |
|
"--t5xxl", |
|
type=str, |
|
required=False, |
|
help="T5-XXL model path. if not specified, use ckpt's state_dict / T5-XXLモデルのパス。指定しない場合はckptのstate_dictを使用", |
|
) |
|
parser.add_argument( |
|
"--save_clip", |
|
action="store_true", |
|
help="[DOES NOT WORK] unified checkpoint is not supported / 統合チェックポイントはまだサポートされていません", |
|
) |
|
parser.add_argument( |
|
"--save_t5xxl", |
|
action="store_true", |
|
help="[DOES NOT WORK] unified checkpoint is not supported / 統合チェックポイントはまだサポートされていません", |
|
) |
|
|
|
parser.add_argument( |
|
"--t5xxl_device", |
|
type=str, |
|
default=None, |
|
help="[DOES NOT WORK] not supported yet. T5-XXL device. if not specified, use accelerator's device / T5-XXLデバイス。指定しない場合はacceleratorのデバイスを使用", |
|
) |
|
parser.add_argument( |
|
"--t5xxl_dtype", |
|
type=str, |
|
default=None, |
|
help="[DOES NOT WORK] not supported yet. T5-XXL dtype. if not specified, use default dtype (from mixed precision) / T5-XXL dtype。指定しない場合はデフォルトのdtype(mixed precisionから)を使用", |
|
) |
|
|
|
parser.add_argument( |
|
"--t5xxl_max_token_length", |
|
type=int, |
|
default=256, |
|
help="maximum token length for T5-XXL. 256 is the default value / T5-XXLの最大トークン長。デフォルトは256", |
|
) |
|
parser.add_argument( |
|
"--apply_lg_attn_mask", |
|
action="store_true", |
|
help="apply attention mask (zero embs) to CLIP-L and G / CLIP-LとGにアテンションマスク(ゼロ埋め)を適用する", |
|
) |
|
parser.add_argument( |
|
"--apply_t5_attn_mask", |
|
action="store_true", |
|
help="apply attention mask (zero embs) to T5-XXL / T5-XXLにアテンションマスク(ゼロ埋め)を適用する", |
|
) |
|
parser.add_argument( |
|
"--clip_l_dropout_rate", |
|
type=float, |
|
default=0.0, |
|
help="Dropout rate for CLIP-L encoder, default is 0.0 / CLIP-Lエンコーダのドロップアウト率、デフォルトは0.0", |
|
) |
|
parser.add_argument( |
|
"--clip_g_dropout_rate", |
|
type=float, |
|
default=0.0, |
|
help="Dropout rate for CLIP-G encoder, default is 0.0 / CLIP-Gエンコーダのドロップアウト率、デフォルトは0.0", |
|
) |
|
parser.add_argument( |
|
"--t5_dropout_rate", |
|
type=float, |
|
default=0.0, |
|
help="Dropout rate for T5 encoder, default is 0.0 / T5エンコーダのドロップアウト率、デフォルトは0.0", |
|
) |
|
parser.add_argument( |
|
"--pos_emb_random_crop_rate", |
|
type=float, |
|
default=0.0, |
|
help="Random crop rate for positional embeddings, default is 0.0. Only for SD3.5M" |
|
" / 位置埋め込みのランダムクロップ率、デフォルトは0.0。SD3.5M以外では予期しない動作になります", |
|
) |
|
parser.add_argument( |
|
"--enable_scaled_pos_embed", |
|
action="store_true", |
|
help="Scale position embeddings for each resolution during multi-resolution training. Only for SD3.5M" |
|
" / 複数解像度学習時に解像度ごとに位置埋め込みをスケーリングする。SD3.5M以外では予期しない動作になります", |
|
) |
|
|
|
|
|
|
|
parser.add_argument( |
|
"--training_shift", |
|
type=float, |
|
default=1.0, |
|
help="Discrete flow shift for training timestep distribution adjustment, applied in addition to the weighting scheme, default is 1.0. /タイムステップ分布のための離散フローシフト、重み付けスキームの上に適用される、デフォルトは1.0。", |
|
) |
|
|
|
|
|
def verify_sdxl_training_args(args: argparse.Namespace, supportTextEncoderCaching: bool = True): |
|
assert not args.v2, "v2 cannot be enabled in SDXL training / SDXL学習ではv2を有効にすることはできません" |
|
if args.v_parameterization: |
|
logger.warning("v_parameterization will be unexpected / SDXL学習ではv_parameterizationは想定外の動作になります") |
|
|
|
if args.clip_skip is not None: |
|
logger.warning("clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert ( |
|
not hasattr(args, "weighted_captions") or not args.weighted_captions |
|
), "weighted_captions cannot be enabled in SDXL training currently / SDXL学習では今のところweighted_captionsを有効にすることはできません" |
|
|
|
if supportTextEncoderCaching: |
|
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs: |
|
args.cache_text_encoder_outputs = True |
|
logger.warning( |
|
"cache_text_encoder_outputs is enabled because cache_text_encoder_outputs_to_disk is enabled / " |
|
+ "cache_text_encoder_outputs_to_diskが有効になっているためcache_text_encoder_outputsが有効になりました" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def get_all_sigmas(sampling: sd3_utils.ModelSamplingDiscreteFlow, steps): |
|
start = sampling.timestep(sampling.sigma_max) |
|
end = sampling.timestep(sampling.sigma_min) |
|
timesteps = torch.linspace(start, end, steps) |
|
sigs = [] |
|
for x in range(len(timesteps)): |
|
ts = timesteps[x] |
|
sigs.append(sampling.sigma(ts)) |
|
sigs += [0.0] |
|
return torch.FloatTensor(sigs) |
|
|
|
|
|
def max_denoise(model_sampling, sigmas): |
|
max_sigma = float(model_sampling.sigma_max) |
|
sigma = float(sigmas[0]) |
|
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma |
|
|
|
|
|
def do_sample( |
|
height: int, |
|
width: int, |
|
seed: int, |
|
cond: Tuple[torch.Tensor, torch.Tensor], |
|
neg_cond: Tuple[torch.Tensor, torch.Tensor], |
|
mmdit: sd3_models.MMDiT, |
|
steps: int, |
|
guidance_scale: float, |
|
dtype: torch.dtype, |
|
device: str, |
|
): |
|
latent = torch.zeros(1, 16, height // 8, width // 8, device=device) |
|
latent = latent.to(dtype).to(device) |
|
|
|
|
|
if seed is not None: |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = None |
|
noise = ( |
|
torch.randn(latent.size(), dtype=torch.float32, layout=latent.layout, generator=generator, device="cpu") |
|
.to(latent.dtype) |
|
.to(device) |
|
) |
|
|
|
model_sampling = sd3_utils.ModelSamplingDiscreteFlow(shift=3.0) |
|
|
|
sigmas = get_all_sigmas(model_sampling, steps).to(device) |
|
|
|
noise_scaled = model_sampling.noise_scaling(sigmas[0], noise, latent, max_denoise(model_sampling, sigmas)) |
|
|
|
c_crossattn = torch.cat([cond[0], neg_cond[0]]).to(device).to(dtype) |
|
y = torch.cat([cond[1], neg_cond[1]]).to(device).to(dtype) |
|
|
|
x = noise_scaled.to(device).to(dtype) |
|
|
|
|
|
|
|
comfy_pbar = ProgressBar(len(sigmas) - 1) |
|
for i in tqdm(range(len(sigmas) - 1)): |
|
sigma_hat = sigmas[i] |
|
|
|
timestep = model_sampling.timestep(sigma_hat).float() |
|
timestep = torch.FloatTensor([timestep, timestep]).to(device) |
|
|
|
x_c_nc = torch.cat([x, x], dim=0) |
|
|
|
|
|
mmdit.prepare_block_swap_before_forward() |
|
model_output = mmdit(x_c_nc, timestep, context=c_crossattn, y=y) |
|
model_output = model_output.float() |
|
batched = model_sampling.calculate_denoised(sigma_hat, model_output, x) |
|
|
|
pos_out, neg_out = batched.chunk(2) |
|
denoised = neg_out + (pos_out - neg_out) * guidance_scale |
|
|
|
|
|
|
|
dims_to_append = x.ndim - sigma_hat.ndim |
|
sigma_hat_dims = sigma_hat[(...,) + (None,) * dims_to_append] |
|
|
|
"""Converts a denoiser output to a Karras ODE derivative.""" |
|
d = (x - denoised) / sigma_hat_dims |
|
|
|
dt = sigmas[i + 1] - sigma_hat |
|
|
|
|
|
x = x + d * dt |
|
x = x.to(dtype) |
|
comfy_pbar.update(1) |
|
|
|
mmdit.prepare_block_swap_before_forward() |
|
return x |
|
|
|
|
|
def sample_images( |
|
accelerator: Accelerator, |
|
args: argparse.Namespace, |
|
epoch, |
|
steps, |
|
mmdit, |
|
vae, |
|
text_encoders, |
|
sample_prompts_te_outputs, |
|
prompt_replacement=None, |
|
validation_settings=None, |
|
): |
|
logger.info("") |
|
logger.info(f"generating sample images at step: {steps}") |
|
|
|
|
|
mmdit = accelerator.unwrap_model(mmdit) |
|
text_encoders = None if text_encoders is None else [accelerator.unwrap_model(te) for te in text_encoders] |
|
|
|
|
|
prompts = [] |
|
for line in args.sample_prompts: |
|
line = line.strip() |
|
if len(line) > 0 and line[0] != "#": |
|
prompts.append(line) |
|
|
|
|
|
for i in range(len(prompts)): |
|
prompt_dict = prompts[i] |
|
if isinstance(prompt_dict, str): |
|
from .train_util import line_to_prompt_dict |
|
|
|
prompt_dict = line_to_prompt_dict(prompt_dict) |
|
prompts[i] = prompt_dict |
|
assert isinstance(prompt_dict, dict) |
|
|
|
|
|
prompt_dict["enum"] = i |
|
prompt_dict.pop("subset", None) |
|
|
|
save_dir = args.output_dir + "/sample" |
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
|
|
rng_state = torch.get_rng_state() |
|
cuda_rng_state = None |
|
try: |
|
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None |
|
except Exception: |
|
pass |
|
|
|
with torch.no_grad(), accelerator.autocast(): |
|
image_tensor_list = [] |
|
for prompt_dict in prompts: |
|
image_tensor = sample_image_inference( |
|
accelerator, |
|
args, |
|
mmdit, |
|
text_encoders, |
|
vae, |
|
save_dir, |
|
prompt_dict, |
|
epoch, |
|
steps, |
|
sample_prompts_te_outputs, |
|
prompt_replacement, |
|
validation_settings |
|
) |
|
print(f"Sampled image shape: {image_tensor.shape}") |
|
image_tensor_list.append(image_tensor) |
|
|
|
torch.set_rng_state(rng_state) |
|
if cuda_rng_state is not None: |
|
torch.cuda.set_rng_state(cuda_rng_state) |
|
|
|
clean_memory_on_device(accelerator.device) |
|
return torch.cat(image_tensor_list, dim=0) |
|
|
|
|
|
def sample_image_inference( |
|
accelerator: Accelerator, |
|
args: argparse.Namespace, |
|
mmdit: sd3_models.MMDiT, |
|
text_encoders: List[Union[CLIPTextModelWithProjection, T5EncoderModel]], |
|
vae: sd3_models.SDVAE, |
|
save_dir, |
|
prompt_dict, |
|
epoch, |
|
steps, |
|
sample_prompts_te_outputs, |
|
validation_settings=None, |
|
prompt_replacement=None, |
|
|
|
): |
|
assert isinstance(prompt_dict, dict) |
|
if validation_settings is not None: |
|
sample_steps = validation_settings["steps"] |
|
width = validation_settings["width"] |
|
height = validation_settings["height"] |
|
scale = validation_settings["guidance_scale"] |
|
seed = validation_settings["seed"] |
|
else: |
|
sample_steps = prompt_dict.get("sample_steps", 30) |
|
width = prompt_dict.get("width", 512) |
|
height = prompt_dict.get("height", 512) |
|
scale = prompt_dict.get("scale", 7.5) |
|
seed = prompt_dict.get("seed") |
|
|
|
negative_prompt = prompt_dict.get("negative_prompt") |
|
prompt: str = prompt_dict.get("prompt", "") |
|
|
|
|
|
if prompt_replacement is not None: |
|
prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1]) |
|
if negative_prompt is not None: |
|
negative_prompt = negative_prompt.replace(prompt_replacement[0], prompt_replacement[1]) |
|
|
|
if seed is not None: |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
else: |
|
|
|
torch.seed() |
|
torch.cuda.seed() |
|
|
|
if negative_prompt is None: |
|
negative_prompt = "" |
|
|
|
height = max(64, height - height % 8) |
|
width = max(64, width - width % 8) |
|
logger.info(f"prompt: {prompt}") |
|
logger.info(f"negative_prompt: {negative_prompt}") |
|
logger.info(f"height: {height}") |
|
logger.info(f"width: {width}") |
|
logger.info(f"sample_steps: {sample_steps}") |
|
logger.info(f"scale: {scale}") |
|
|
|
if seed is not None: |
|
logger.info(f"seed: {seed}") |
|
|
|
|
|
tokenize_strategy = strategy_base.TokenizeStrategy.get_strategy() |
|
encoding_strategy = strategy_base.TextEncodingStrategy.get_strategy() |
|
|
|
def encode_prompt(prpt): |
|
text_encoder_conds = [] |
|
if sample_prompts_te_outputs and prpt in sample_prompts_te_outputs: |
|
text_encoder_conds = sample_prompts_te_outputs[prpt] |
|
print(f"Using cached text encoder outputs for prompt: {prpt}") |
|
if text_encoders is not None: |
|
print(f"Encoding prompt: {prpt}") |
|
tokens_and_masks = tokenize_strategy.tokenize(prpt) |
|
|
|
encoded_text_encoder_conds = encoding_strategy.encode_tokens(tokenize_strategy, text_encoders, tokens_and_masks) |
|
|
|
|
|
if len(text_encoder_conds) == 0: |
|
text_encoder_conds = encoded_text_encoder_conds |
|
else: |
|
|
|
for i in range(len(encoded_text_encoder_conds)): |
|
if encoded_text_encoder_conds[i] is not None: |
|
text_encoder_conds[i] = encoded_text_encoder_conds[i] |
|
return text_encoder_conds |
|
|
|
lg_out, t5_out, pooled, l_attn_mask, g_attn_mask, t5_attn_mask = encode_prompt(prompt) |
|
cond = encoding_strategy.concat_encodings(lg_out, t5_out, pooled) |
|
|
|
|
|
lg_out, t5_out, pooled, l_attn_mask, g_attn_mask, t5_attn_mask = encode_prompt(negative_prompt) |
|
neg_cond = encoding_strategy.concat_encodings(lg_out, t5_out, pooled) |
|
|
|
|
|
clean_memory_on_device(accelerator.device) |
|
with accelerator.autocast(), torch.no_grad(): |
|
|
|
latents = do_sample(height, width, seed, cond, neg_cond, mmdit, sample_steps, scale, vae.dtype, accelerator.device) |
|
|
|
|
|
clean_memory_on_device(accelerator.device) |
|
org_vae_device = vae.device |
|
vae.to(accelerator.device) |
|
latents = vae.process_out(latents.to(vae.device, dtype=vae.dtype)) |
|
image_tensor = vae.decode(latents) |
|
vae.to(org_vae_device) |
|
clean_memory_on_device(accelerator.device) |
|
|
|
image = image_tensor.float() |
|
image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)[0] |
|
decoded_np = 255.0 * np.moveaxis(image.cpu().numpy(), 0, 2) |
|
decoded_np = decoded_np.astype(np.uint8) |
|
|
|
image = Image.fromarray(decoded_np) |
|
|
|
|
|
|
|
ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime()) |
|
num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}" |
|
seed_suffix = "" if seed is None else f"_{seed}" |
|
i: int = prompt_dict["enum"] |
|
img_filename = f"{'' if args.output_name is None else args.output_name + '_'}{num_suffix}_{i:02d}_{ts_str}{seed_suffix}.png" |
|
image.save(os.path.join(save_dir, img_filename)) |
|
return image_tensor |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.utils import BaseOutput |
|
|
|
|
|
@dataclass |
|
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
|
|
|
|
class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Euler scheduler. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
timestep_spacing (`str`, defaults to `"linspace"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
shift (`float`, defaults to 1.0): |
|
The shift value for the timestep schedule. |
|
""" |
|
|
|
_compatibles = [] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
shift: float = 1.0, |
|
): |
|
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() |
|
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) |
|
|
|
sigmas = timesteps / num_train_timesteps |
|
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) |
|
|
|
self.timesteps = sigmas * num_train_timesteps |
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
|
|
self.sigmas = sigmas.to("cpu") |
|
self.sigma_min = self.sigmas[-1].item() |
|
self.sigma_max = self.sigmas[0].item() |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increase 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
@property |
|
def begin_index(self): |
|
""" |
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. |
|
""" |
|
return self._begin_index |
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0): |
|
""" |
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. |
|
|
|
Args: |
|
begin_index (`int`): |
|
The begin index for the scheduler. |
|
""" |
|
self._begin_index = begin_index |
|
|
|
def scale_noise( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
noise: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
""" |
|
Forward process in flow-matching |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
A scaled input sample. |
|
""" |
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
sample = sigma * noise + (1.0 - sigma) * sample |
|
|
|
return sample |
|
|
|
def _sigma_to_t(self, sigma): |
|
return sigma * self.config.num_train_timesteps |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
|
|
timesteps = np.linspace(self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps) |
|
|
|
sigmas = timesteps / self.config.num_train_timesteps |
|
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) |
|
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) |
|
|
|
timesteps = sigmas * self.config.num_train_timesteps |
|
self.timesteps = timesteps.to(device=device) |
|
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) |
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
indices = (schedule_timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
pos = 1 if len(indices) > 1 else 0 |
|
|
|
return indices[pos].item() |
|
|
|
def _init_step_index(self, timestep): |
|
if self.begin_index is None: |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
self._step_index = self.index_for_timestep(timestep) |
|
else: |
|
self._step_index = self._begin_index |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
s_churn: float = 0.0, |
|
s_tmin: float = 0.0, |
|
s_tmax: float = float("inf"), |
|
s_noise: float = 1.0, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
s_churn (`float`): |
|
s_tmin (`float`): |
|
s_tmax (`float`): |
|
s_noise (`float`, defaults to 1.0): |
|
Scaling factor for noise added to the sample. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or |
|
tuple. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is |
|
returned, otherwise a tuple is returned where the first element is the sample tensor. |
|
""" |
|
|
|
if isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
sample = sample.to(torch.float32) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
|
|
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 |
|
|
|
noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator) |
|
|
|
eps = noise * s_noise |
|
sigma_hat = sigma * (gamma + 1) |
|
|
|
if gamma > 0: |
|
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
denoised = sample - model_output * sigma |
|
|
|
derivative = (sample - denoised) / sigma_hat |
|
|
|
dt = self.sigmas[self.step_index + 1] - sigma_hat |
|
|
|
prev_sample = sample + derivative * dt |
|
|
|
prev_sample = prev_sample.to(model_output.dtype) |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|
|
|
|
def get_sigmas(noise_scheduler, timesteps, device, n_dim=4, dtype=torch.float32): |
|
sigmas = noise_scheduler.sigmas.to(device=device, dtype=dtype) |
|
schedule_timesteps = noise_scheduler.timesteps.to(device) |
|
timesteps = timesteps.to(device) |
|
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < n_dim: |
|
sigma = sigma.unsqueeze(-1) |
|
return sigma |
|
|
|
|
|
def compute_density_for_timestep_sampling( |
|
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None |
|
): |
|
"""Compute the density for sampling the timesteps when doing SD3 training. |
|
|
|
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528. |
|
|
|
SD3 paper reference: https://arxiv.org/abs/2403.03206v1. |
|
""" |
|
if weighting_scheme == "logit_normal": |
|
|
|
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu") |
|
u = torch.nn.functional.sigmoid(u) |
|
elif weighting_scheme == "mode": |
|
u = torch.rand(size=(batch_size,), device="cpu") |
|
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u) |
|
else: |
|
u = torch.rand(size=(batch_size,), device="cpu") |
|
return u |
|
|
|
|
|
def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas=None): |
|
"""Computes loss weighting scheme for SD3 training. |
|
|
|
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528. |
|
|
|
SD3 paper reference: https://arxiv.org/abs/2403.03206v1. |
|
""" |
|
if weighting_scheme == "sigma_sqrt": |
|
weighting = (sigmas**-2.0).float() |
|
elif weighting_scheme == "cosmap": |
|
bot = 1 - 2 * sigmas + 2 * sigmas**2 |
|
weighting = 2 / (math.pi * bot) |
|
else: |
|
weighting = torch.ones_like(sigmas) |
|
return weighting |
|
|
|
|
|
|
|
|
|
|
|
def get_noisy_model_input_and_timesteps(args, latents, noise, device, dtype) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
bsz = latents.shape[0] |
|
|
|
|
|
|
|
u = compute_density_for_timestep_sampling( |
|
weighting_scheme=args.weighting_scheme, |
|
batch_size=bsz, |
|
logit_mean=args.logit_mean, |
|
logit_std=args.logit_std, |
|
mode_scale=args.mode_scale, |
|
) |
|
t_min = args.min_timestep if args.min_timestep is not None else 0 |
|
t_max = args.max_timestep if args.max_timestep is not None else 1000 |
|
shift = args.training_shift |
|
|
|
|
|
u = (u * shift) / (1 + (shift - 1) * u) |
|
|
|
indices = (u * (t_max - t_min) + t_min).long() |
|
timesteps = indices.to(device=device, dtype=dtype) |
|
|
|
|
|
sigmas = timesteps / 1000 |
|
sigmas = sigmas.view(-1, 1, 1, 1) |
|
noisy_model_input = sigmas * noise + (1.0 - sigmas) * latents |
|
|
|
return noisy_model_input, timesteps, sigmas |
|
|