ml_test / lycoris /kohya.py
tonyshark's picture
Upload 132 files
cc69848 verified
import os
import fnmatch
import re
import logging
from typing import Any, List
import torch
from .utils import precalculate_safetensors_hashes
from .wrapper import LycorisNetwork, network_module_dict, deprecated_arg_dict
from .modules.locon import LoConModule
from .modules.loha import LohaModule
from .modules.ia3 import IA3Module
from .modules.lokr import LokrModule
from .modules.dylora import DyLoraModule
from .modules.glora import GLoRAModule
from .modules.norms import NormModule
from .modules.full import FullModule
from .modules.diag_oft import DiagOFTModule
from .modules.boft import ButterflyOFTModule
from .modules import make_module, get_module
from .config import PRESET
from .utils.preset import read_preset
from .utils import str_bool
from .logging import logger
def create_network(
multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs
):
for key, value in list(kwargs.items()):
if key in deprecated_arg_dict:
logger.warning(
f"{key} is deprecated. Please use {deprecated_arg_dict[key]} instead.",
stacklevel=2,
)
kwargs[deprecated_arg_dict[key]] = value
if network_dim is None:
network_dim = 4 # default
conv_dim = int(kwargs.get("conv_dim", network_dim) or network_dim)
conv_alpha = float(kwargs.get("conv_alpha", network_alpha) or network_alpha)
dropout = float(kwargs.get("dropout", 0.0) or 0.0)
rank_dropout = float(kwargs.get("rank_dropout", 0.0) or 0.0)
module_dropout = float(kwargs.get("module_dropout", 0.0) or 0.0)
algo = (kwargs.get("algo", "lora") or "lora").lower()
use_tucker = str_bool(
not kwargs.get("disable_conv_cp", True)
or kwargs.get("use_conv_cp", False)
or kwargs.get("use_cp", False)
or kwargs.get("use_tucker", False)
)
use_scalar = str_bool(kwargs.get("use_scalar", False))
block_size = int(kwargs.get("block_size", None) or 4)
train_norm = str_bool(kwargs.get("train_norm", False))
constraint = float(kwargs.get("constraint", None) or 0)
rescaled = str_bool(kwargs.get("rescaled", False))
weight_decompose = str_bool(kwargs.get("dora_wd", False))
wd_on_output = str_bool(kwargs.get("wd_on_output", False))
full_matrix = str_bool(kwargs.get("full_matrix", False))
bypass_mode = str_bool(kwargs.get("bypass_mode", None))
rs_lora = str_bool(kwargs.get("rs_lora", False))
unbalanced_factorization = str_bool(kwargs.get("unbalanced_factorization", False))
train_t5xxl = str_bool(kwargs.get("train_t5xxl", False))
if unbalanced_factorization:
logger.info("Unbalanced factorization for LoKr is enabled")
if bypass_mode:
logger.info("Bypass mode is enabled")
if weight_decompose:
logger.info("Weight decomposition is enabled")
if full_matrix:
logger.info("Full matrix mode for LoKr is enabled")
preset_str = kwargs.get("preset", "full")
if preset_str not in PRESET:
preset = read_preset(preset_str)
else:
preset = PRESET[preset_str]
assert preset is not None
LycorisNetworkKohya.apply_preset(preset)
logger.info(f"Using rank adaptation algo: {algo}")
if algo == "ia3" and preset_str != "ia3":
logger.warning("It is recommended to use preset ia3 for IA^3 algorithm")
network = LycorisNetworkKohya(
text_encoder,
unet,
multiplier=multiplier,
lora_dim=network_dim,
conv_lora_dim=conv_dim,
alpha=network_alpha,
conv_alpha=conv_alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
use_tucker=use_tucker,
use_scalar=use_scalar,
network_module=algo,
train_norm=train_norm,
decompose_both=kwargs.get("decompose_both", False),
factor=kwargs.get("factor", -1),
block_size=block_size,
constraint=constraint,
rescaled=rescaled,
weight_decompose=weight_decompose,
wd_on_out=wd_on_output,
full_matrix=full_matrix,
bypass_mode=bypass_mode,
rs_lora=rs_lora,
unbalanced_factorization=unbalanced_factorization,
train_t5xxl=train_t5xxl,
)
return network
def create_network_from_weights(
multiplier,
file,
vae,
text_encoder,
unet,
weights_sd=None,
for_inference=False,
**kwargs,
):
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping
unet_loras = {}
te_loras = {}
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if lora_name.startswith(LycorisNetworkKohya.LORA_PREFIX_UNET):
unet_loras[lora_name] = None
elif lora_name.startswith(LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER):
te_loras[lora_name] = None
for name, modules in unet.named_modules():
lora_name = f"{LycorisNetworkKohya.LORA_PREFIX_UNET}_{name}".replace(".", "_")
if lora_name in unet_loras:
unet_loras[lora_name] = modules
if isinstance(text_encoder, list):
text_encoders = text_encoder
use_index = True
else:
text_encoders = [text_encoder]
use_index = False
for idx, te in enumerate(text_encoders):
if use_index:
prefix = f"{LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER}{idx+1}"
else:
prefix = LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER
for name, modules in te.named_modules():
lora_name = f"{prefix}_{name}".replace(".", "_")
if lora_name in te_loras:
te_loras[lora_name] = modules
original_level = logger.level
logger.setLevel(logging.ERROR)
network = LycorisNetworkKohya(text_encoder, unet)
network.unet_loras = []
network.text_encoder_loras = []
logger.setLevel(original_level)
logger.info("Loading UNet Modules from state dict...")
for lora_name, orig_modules in unet_loras.items():
if orig_modules is None:
continue
lyco_type, params = get_module(weights_sd, lora_name)
module = make_module(lyco_type, params, lora_name, orig_modules)
if module is not None:
network.unet_loras.append(module)
logger.info(f"{len(network.unet_loras)} Modules Loaded")
logger.info("Loading TE Modules from state dict...")
for lora_name, orig_modules in te_loras.items():
if orig_modules is None:
continue
lyco_type, params = get_module(weights_sd, lora_name)
module = make_module(lyco_type, params, lora_name, orig_modules)
if module is not None:
network.text_encoder_loras.append(module)
logger.info(f"{len(network.text_encoder_loras)} Modules Loaded")
for lora in network.unet_loras + network.text_encoder_loras:
lora.multiplier = multiplier
return network, weights_sd
class LycorisNetworkKohya(LycorisNetwork):
"""
LoRA + LoCon
"""
# Ignore proj_in or proj_out, their channels is only a few.
ENABLE_CONV = True
UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
"ResnetBlock2D",
"Downsample2D",
"Upsample2D",
"HunYuanDiTBlock",
"DoubleStreamBlock",
"SingleStreamBlock",
"SingleDiTBlock",
"MMDoubleStreamBlock", #HunYuanVideo
"MMSingleStreamBlock", #HunYuanVideo
]
UNET_TARGET_REPLACE_NAME = [
"conv_in",
"conv_out",
"time_embedding.linear_1",
"time_embedding.linear_2",
]
TEXT_ENCODER_TARGET_REPLACE_MODULE = [
"CLIPAttention",
"CLIPSdpaAttention",
"CLIPMLP",
"MT5Block",
"BertLayer",
]
TEXT_ENCODER_TARGET_REPLACE_NAME = []
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
MODULE_ALGO_MAP = {}
NAME_ALGO_MAP = {}
USE_FNMATCH = False
@classmethod
def apply_preset(cls, preset):
if "enable_conv" in preset:
cls.ENABLE_CONV = preset["enable_conv"]
if "unet_target_module" in preset:
cls.UNET_TARGET_REPLACE_MODULE = preset["unet_target_module"]
if "unet_target_name" in preset:
cls.UNET_TARGET_REPLACE_NAME = preset["unet_target_name"]
if "text_encoder_target_module" in preset:
cls.TEXT_ENCODER_TARGET_REPLACE_MODULE = preset[
"text_encoder_target_module"
]
if "text_encoder_target_name" in preset:
cls.TEXT_ENCODER_TARGET_REPLACE_NAME = preset["text_encoder_target_name"]
if "module_algo_map" in preset:
cls.MODULE_ALGO_MAP = preset["module_algo_map"]
if "name_algo_map" in preset:
cls.NAME_ALGO_MAP = preset["name_algo_map"]
if "use_fnmatch" in preset:
cls.USE_FNMATCH = preset["use_fnmatch"]
return cls
def __init__(
self,
text_encoder,
unet,
multiplier=1.0,
lora_dim=4,
conv_lora_dim=4,
alpha=1,
conv_alpha=1,
use_tucker=False,
dropout=0,
rank_dropout=0,
module_dropout=0,
network_module: str = "locon",
norm_modules=NormModule,
train_norm=False,
train_t5xxl=False,
**kwargs,
) -> None:
torch.nn.Module.__init__(self)
root_kwargs = kwargs
self.multiplier = multiplier
self.lora_dim = lora_dim
self.train_t5xxl = train_t5xxl
if not self.ENABLE_CONV:
conv_lora_dim = 0
self.conv_lora_dim = int(conv_lora_dim)
if self.conv_lora_dim and self.conv_lora_dim != self.lora_dim:
logger.info("Apply different lora dim for conv layer")
logger.info(f"Conv Dim: {conv_lora_dim}, Linear Dim: {lora_dim}")
elif self.conv_lora_dim == 0:
logger.info("Disable conv layer")
self.alpha = alpha
self.conv_alpha = float(conv_alpha)
if self.conv_lora_dim and self.alpha != self.conv_alpha:
logger.info("Apply different alpha value for conv layer")
logger.info(f"Conv alpha: {conv_alpha}, Linear alpha: {alpha}")
if 1 >= dropout >= 0:
logger.info(f"Use Dropout value: {dropout}")
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.use_tucker = use_tucker
def create_single_module(
lora_name: str,
module: torch.nn.Module,
algo_name,
dim=None,
alpha=None,
use_tucker=self.use_tucker,
**kwargs,
):
for k, v in root_kwargs.items():
if k in kwargs:
continue
kwargs[k] = v
if train_norm and "Norm" in module.__class__.__name__:
return norm_modules(
lora_name,
module,
self.multiplier,
self.rank_dropout,
self.module_dropout,
**kwargs,
)
lora = None
if isinstance(module, torch.nn.Linear) and lora_dim > 0:
dim = dim or lora_dim
alpha = alpha or self.alpha
elif isinstance(
module, (torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d)
):
k_size, *_ = module.kernel_size
if k_size == 1 and lora_dim > 0:
dim = dim or lora_dim
alpha = alpha or self.alpha
elif conv_lora_dim > 0 or dim:
dim = dim or conv_lora_dim
alpha = alpha or self.conv_alpha
else:
return None
else:
return None
lora = network_module_dict[algo_name](
lora_name,
module,
self.multiplier,
dim,
alpha,
self.dropout,
self.rank_dropout,
self.module_dropout,
use_tucker,
**kwargs,
)
return lora
def create_modules_(
prefix: str,
root_module: torch.nn.Module,
algo,
configs={},
):
loras = {}
lora_names = []
for name, module in root_module.named_modules():
module_name = module.__class__.__name__
if module_name in self.MODULE_ALGO_MAP and module is not root_module:
next_config = self.MODULE_ALGO_MAP[module_name]
next_algo = next_config.get("algo", algo)
new_loras, new_lora_names = create_modules_(
f"{prefix}_{name}", module, next_algo, next_config
)
for lora_name, lora in zip(new_lora_names, new_loras):
if lora_name not in loras:
loras[lora_name] = lora
lora_names.append(lora_name)
continue
if name:
lora_name = prefix + "." + name
else:
lora_name = prefix
lora_name = lora_name.replace(".", "_")
if lora_name in loras:
continue
lora = create_single_module(lora_name, module, algo, **configs)
if lora is not None:
loras[lora_name] = lora
lora_names.append(lora_name)
return [loras[lora_name] for lora_name in lora_names], lora_names
# create module instances
def create_modules(
prefix,
root_module: torch.nn.Module,
target_replace_modules,
target_replace_names=[],
) -> List:
logger.info("Create LyCORIS Module")
loras = []
next_config = {}
for name, module in root_module.named_modules():
module_name = module.__class__.__name__
if module_name in target_replace_modules and not any(
self.match_fn(t, name) for t in target_replace_names
):
if module_name in self.MODULE_ALGO_MAP:
next_config = self.MODULE_ALGO_MAP[module_name]
algo = next_config.get("algo", network_module)
else:
algo = network_module
loras.extend(
create_modules_(f"{prefix}_{name}", module, algo, next_config)[
0
]
)
next_config = {}
elif name in target_replace_names or any(
self.match_fn(t, name) for t in target_replace_names
):
conf_from_name = self.find_conf_for_name(name)
if conf_from_name is not None:
next_config = conf_from_name
algo = next_config.get("algo", network_module)
elif module_name in self.MODULE_ALGO_MAP:
next_config = self.MODULE_ALGO_MAP[module_name]
algo = next_config.get("algo", network_module)
else:
algo = network_module
lora_name = prefix + "." + name
lora_name = lora_name.replace(".", "_")
lora = create_single_module(lora_name, module, algo, **next_config)
next_config = {}
if lora is not None:
loras.append(lora)
return loras
if network_module == GLoRAModule:
logger.info("GLoRA enabled, only train transformer")
# only train transformer (for GLoRA)
LycorisNetworkKohya.UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
"Attention",
]
LycorisNetworkKohya.UNET_TARGET_REPLACE_NAME = []
self.text_encoder_loras = []
if text_encoder:
if isinstance(text_encoder, list):
text_encoders = text_encoder
use_index = True
else:
text_encoders = [text_encoder]
use_index = False
for i, te in enumerate(text_encoders):
self.text_encoder_loras.extend(
create_modules(
LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER
+ (f"{i+1}" if use_index else ""),
te,
LycorisNetworkKohya.TEXT_ENCODER_TARGET_REPLACE_MODULE,
LycorisNetworkKohya.TEXT_ENCODER_TARGET_REPLACE_NAME,
)
)
logger.info(
f"create LyCORIS for Text Encoder: {len(self.text_encoder_loras)} modules."
)
self.unet_loras = create_modules(
LycorisNetworkKohya.LORA_PREFIX_UNET,
unet,
LycorisNetworkKohya.UNET_TARGET_REPLACE_MODULE,
LycorisNetworkKohya.UNET_TARGET_REPLACE_NAME,
)
logger.info(f"create LyCORIS for U-Net: {len(self.unet_loras)} modules.")
algo_table = {}
for lora in self.text_encoder_loras + self.unet_loras:
algo_table[lora.__class__.__name__] = (
algo_table.get(lora.__class__.__name__, 0) + 1
)
logger.info(f"module type table: {algo_table}")
self.weights_sd = None
self.loras = self.text_encoder_loras + self.unet_loras
# assertion
names = set()
for lora in self.loras:
assert (
lora.lora_name not in names
), f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def match_fn(self, pattern: str, name: str) -> bool:
if self.USE_FNMATCH:
return fnmatch.fnmatch(name, pattern)
return re.match(pattern, name)
def find_conf_for_name(
self,
name: str,
) -> dict[str, Any]:
if name in self.NAME_ALGO_MAP.keys():
return self.NAME_ALGO_MAP[name]
for key, value in self.NAME_ALGO_MAP.items():
if self.match_fn(key, name):
return value
return None
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
self.weights_sd = load_file(file)
else:
self.weights_sd = torch.load(file, map_location="cpu")
missing, unexpected = self.load_state_dict(self.weights_sd, strict=False)
state = {}
if missing:
state["missing keys"] = missing
if unexpected:
state["unexpected keys"] = unexpected
return state
def apply_to(self, text_encoder, unet, apply_text_encoder=None, apply_unet=None):
assert (
apply_text_encoder is not None and apply_unet is not None
), f"internal error: flag not set"
if apply_text_encoder:
logger.info("enable LyCORIS for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info("enable LyCORIS for U-Net")
else:
self.unet_loras = []
self.loras = self.text_encoder_loras + self.unet_loras
for lora in self.loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
if self.weights_sd:
# if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros)
info = self.load_state_dict(self.weights_sd, False)
logger.info(f"weights are loaded: {info}")
# TODO refactor to common function with apply_to
def merge_to(self, text_encoder, unet, weights_sd, dtype, device):
apply_text_encoder = apply_unet = False
for key in weights_sd.keys():
if key.startswith(LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER):
apply_text_encoder = True
elif key.startswith(LycorisNetworkKohya.LORA_PREFIX_UNET):
apply_unet = True
if apply_text_encoder:
logger.info("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info("enable LoRA for U-Net")
else:
self.unet_loras = []
self.loras = self.text_encoder_loras + self.unet_loras
super().merge_to(1)
def apply_max_norm_regularization(self, max_norm_value, device):
key_scaled = 0
norms = []
for module in self.unet_loras + self.text_encoder_loras:
scaled, norm = module.apply_max_norm(max_norm_value, device)
if scaled is None:
continue
norms.append(norm)
key_scaled += scaled
if key_scaled == 0:
return 0, 0, 0
return key_scaled, sum(norms) / len(norms), max(norms)
def prepare_optimizer_params(self, text_encoder_lr=None, unet_lr: float = 1e-4, learning_rate=None):
def enumerate_params(loras):
params = []
for lora in loras:
params.extend(lora.parameters())
return params
self.requires_grad_(True)
all_params = []
lr_descriptions = []
if self.text_encoder_loras:
param_data = {"params": enumerate_params(self.text_encoder_loras)}
if text_encoder_lr is not None:
param_data["lr"] = text_encoder_lr
all_params.append(param_data)
lr_descriptions.append("text_encoder")
if self.unet_loras:
param_data = {"params": enumerate_params(self.unet_loras)}
if unet_lr is not None:
param_data["lr"] = unet_lr
all_params.append(param_data)
lr_descriptions.append("unet")
return all_params, lr_descriptions
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
#def on_step_start(self):
# pass
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash = precalculate_safetensors_hashes(state_dict)
metadata["sshs_model_hash"] = model_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)