ml_test / networks /lora_flux.py
tonyshark's picture
Upload 132 files
cc69848 verified
# temporary minimum implementation of LoRA
# FLUX doesn't have Conv2d, so we ignore it
# TODO commonize with the original implementation
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import math
import os
from typing import Dict, List, Optional, Tuple, Type, Union
from diffusers import AutoencoderKL
from transformers import CLIPTextModel
import numpy as np
import torch
import re
#from ..library.utils import setup_logging
#setup_logging()
import logging
logger = logging.getLogger(__name__)
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=None,
rank_dropout=None,
module_dropout=None,
split_dims: Optional[List[int]] = None,
):
"""if alpha == 0 or None, alpha is rank (no scaling)."""
super().__init__()
self.lora_name = lora_name
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
self.lora_dim = lora_dim
self.split_dims = split_dims
if split_dims is None:
if org_module.__class__.__name__ == "Conv2d":
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
else:
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
else:
# conv2d not supported
assert sum(split_dims) == out_dim, "sum of split_dims must be equal to out_dim"
assert org_module.__class__.__name__ == "Linear", "split_dims is only supported for Linear"
# print(f"split_dims: {split_dims}")
self.lora_down = torch.nn.ModuleList(
[torch.nn.Linear(in_dim, self.lora_dim, bias=False) for _ in range(len(split_dims))]
)
self.lora_up = torch.nn.ModuleList([torch.nn.Linear(self.lora_dim, split_dim, bias=False) for split_dim in split_dims])
for lora_down in self.lora_down:
torch.nn.init.kaiming_uniform_(lora_down.weight, a=math.sqrt(5))
for lora_up in self.lora_up:
torch.nn.init.zeros_(lora_up.weight)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
# same as microsoft's
self.multiplier = multiplier
self.org_module = org_module # remove in applying
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def forward(self, x):
org_forwarded = self.org_forward(x)
# module dropout
if self.module_dropout is not None and self.training:
if torch.rand(1) < self.module_dropout:
return org_forwarded
if self.split_dims is None:
lx = self.lora_down(x)
# normal dropout
if self.dropout is not None and self.training:
lx = torch.nn.functional.dropout(lx, p=self.dropout)
# rank dropout
if self.rank_dropout is not None and self.training:
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
if len(lx.size()) == 3:
mask = mask.unsqueeze(1) # for Text Encoder
elif len(lx.size()) == 4:
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
lx = lx * mask
# scaling for rank dropout: treat as if the rank is changed
# maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lx = self.lora_up(lx)
return org_forwarded + lx * self.multiplier * scale
else:
lxs = [lora_down(x) for lora_down in self.lora_down]
# normal dropout
if self.dropout is not None and self.training:
lxs = [torch.nn.functional.dropout(lx, p=self.dropout) for lx in lxs]
# rank dropout
if self.rank_dropout is not None and self.training:
masks = [torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout for lx in lxs]
for i in range(len(lxs)):
if len(lx.size()) == 3:
masks[i] = masks[i].unsqueeze(1)
elif len(lx.size()) == 4:
masks[i] = masks[i].unsqueeze(-1).unsqueeze(-1)
lxs[i] = lxs[i] * masks[i]
# scaling for rank dropout: treat as if the rank is changed
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)]
return org_forwarded + torch.cat(lxs, dim=-1) * self.multiplier * scale
class LoRAInfModule(LoRAModule):
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
**kwargs,
):
# no dropout for inference
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha)
self.org_module_ref = [org_module] # 後から参照できるように
self.enabled = True
self.network: LoRANetwork = None
def set_network(self, network):
self.network = network
# freezeしてマージする
def merge_to(self, sd, dtype, device):
# extract weight from org_module
org_sd = self.org_module.state_dict()
weight = org_sd["weight"]
org_dtype = weight.dtype
org_device = weight.device
weight = weight.to(torch.float) # calc in float
if dtype is None:
dtype = org_dtype
if device is None:
device = org_device
if self.split_dims is None:
# get up/down weight
down_weight = sd["lora_down.weight"].to(torch.float).to(device)
up_weight = sd["lora_up.weight"].to(torch.float).to(device)
# merge weight
if len(weight.size()) == 2:
# linear
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
+ self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# logger.info(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + self.multiplier * conved * self.scale
# set weight to org_module
org_sd["weight"] = weight.to(dtype)
self.org_module.load_state_dict(org_sd)
else:
# split_dims
total_dims = sum(self.split_dims)
for i in range(len(self.split_dims)):
# get up/down weight
down_weight = sd[f"lora_down.{i}.weight"].to(torch.float).to(device) # (rank, in_dim)
up_weight = sd[f"lora_up.{i}.weight"].to(torch.float).to(device) # (split dim, rank)
# pad up_weight -> (total_dims, rank)
padded_up_weight = torch.zeros((total_dims, up_weight.size(0)), device=device, dtype=torch.float)
padded_up_weight[sum(self.split_dims[:i]) : sum(self.split_dims[: i + 1])] = up_weight
# merge weight
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
# set weight to org_module
org_sd["weight"] = weight.to(dtype)
self.org_module.load_state_dict(org_sd)
# 復元できるマージのため、このモジュールのweightを返す
def get_weight(self, multiplier=None):
if multiplier is None:
multiplier = self.multiplier
# get up/down weight from module
up_weight = self.lora_up.weight.to(torch.float)
down_weight = self.lora_down.weight.to(torch.float)
# pre-calculated weight
if len(down_weight.size()) == 2:
# linear
weight = self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = self.multiplier * conved * self.scale
return weight
def set_region(self, region):
self.region = region
self.region_mask = None
def default_forward(self, x):
# logger.info(f"default_forward {self.lora_name} {x.size()}")
if self.split_dims is None:
lx = self.lora_down(x)
lx = self.lora_up(lx)
return self.org_forward(x) + lx * self.multiplier * self.scale
else:
lxs = [lora_down(x) for lora_down in self.lora_down]
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)]
return self.org_forward(x) + torch.cat(lxs, dim=-1) * self.multiplier * self.scale
def forward(self, x):
if not self.enabled:
return self.org_forward(x)
return self.default_forward(x)
def create_network(
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
ae: AutoencoderKL,
text_encoders: List[CLIPTextModel],
flux,
neuron_dropout: Optional[float] = None,
**kwargs,
):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
network_alpha = 1.0
# extract dim/alpha for conv2d, and block dim
conv_dim = kwargs.get("conv_dim", None)
conv_alpha = kwargs.get("conv_alpha", None)
if conv_dim is not None:
conv_dim = int(conv_dim)
if conv_alpha is None:
conv_alpha = 1.0
else:
conv_alpha = float(conv_alpha)
# rank/module dropout
rank_dropout = kwargs.get("rank_dropout", None)
if rank_dropout is not None:
rank_dropout = float(rank_dropout)
module_dropout = kwargs.get("module_dropout", None)
if module_dropout is not None:
module_dropout = float(module_dropout)
# single or double blocks
train_blocks = kwargs.get("train_blocks", None) # None (default), "all" (same as None), "single", "double"
if train_blocks is not None:
assert train_blocks in ["all", "single", "double"], f"invalid train_blocks: {train_blocks}"
only_if_contains = kwargs.get("only_if_contains", None)
if only_if_contains is not None:
only_if_contains = [word.strip() for word in only_if_contains.split(',')]
# split qkv
split_qkv = kwargs.get("split_qkv", False)
if split_qkv is not None:
split_qkv = True if split_qkv == "True" else False
# train T5XXL
train_t5xxl = kwargs.get("train_t5xxl", False)
if train_t5xxl is not None:
train_t5xxl = True if train_t5xxl == "True" else False
# すごく引数が多いな ( ^ω^)・・・
network = LoRANetwork(
text_encoders,
flux,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
dropout=neuron_dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
conv_lora_dim=conv_dim,
conv_alpha=conv_alpha,
train_blocks=train_blocks,
split_qkv=split_qkv,
train_t5xxl=train_t5xxl,
varbose=True,
only_if_contains=only_if_contains
)
loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None)
loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None)
loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None)
loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None
loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None
loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None
if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None:
network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio)
return network
# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(multiplier, file, ae, text_encoders, flux, weights_sd=None, for_inference=False, **kwargs):
# if unet is an instance of SdxlUNet2DConditionModel or subclass, set is_sdxl to True
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping, and train t5xxl
modules_dim = {}
modules_alpha = {}
train_t5xxl = None
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if "alpha" in key:
modules_alpha[lora_name] = value
elif "lora_down" in key:
dim = value.size()[0]
modules_dim[lora_name] = dim
# logger.info(lora_name, value.size(), dim)
if train_t5xxl is None or train_t5xxl is False:
train_t5xxl = "lora_te3" in lora_name
if train_t5xxl is None:
train_t5xxl = False
# # split qkv
# double_qkv_rank = None
# single_qkv_rank = None
# rank = None
# for lora_name, dim in modules_dim.items():
# if "double" in lora_name and "qkv" in lora_name:
# double_qkv_rank = dim
# elif "single" in lora_name and "linear1" in lora_name:
# single_qkv_rank = dim
# elif rank is None:
# rank = dim
# if double_qkv_rank is not None and single_qkv_rank is not None and rank is not None:
# break
# split_qkv = (double_qkv_rank is not None and double_qkv_rank != rank) or (
# single_qkv_rank is not None and single_qkv_rank != rank
# )
split_qkv = False # split_qkv is not needed to care, because state_dict is qkv combined
module_class = LoRAInfModule if for_inference else LoRAModule
network = LoRANetwork(
text_encoders,
flux,
multiplier=multiplier,
modules_dim=modules_dim,
modules_alpha=modules_alpha,
module_class=module_class,
split_qkv=split_qkv,
train_t5xxl=train_t5xxl,
)
return network, weights_sd
class LoRANetwork(torch.nn.Module):
# FLUX_TARGET_REPLACE_MODULE = ["DoubleStreamBlock", "SingleStreamBlock"]
FLUX_TARGET_REPLACE_MODULE_DOUBLE = ["DoubleStreamBlock"]
FLUX_TARGET_REPLACE_MODULE_SINGLE = ["SingleStreamBlock"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPSdpaAttention", "CLIPMLP", "T5Attention", "T5DenseGatedActDense"]
LORA_PREFIX_FLUX = "lora_unet" # make ComfyUI compatible
LORA_PREFIX_TEXT_ENCODER_CLIP = "lora_te1"
LORA_PREFIX_TEXT_ENCODER_T5 = "lora_te3" # make ComfyUI compatible
def __init__(
self,
text_encoders: Union[List[CLIPTextModel], CLIPTextModel],
unet,
multiplier: float = 1.0,
lora_dim: int = 4,
alpha: float = 1,
dropout: Optional[float] = None,
rank_dropout: Optional[float] = None,
module_dropout: Optional[float] = None,
conv_lora_dim: Optional[int] = None,
conv_alpha: Optional[float] = None,
module_class: Type[object] = LoRAModule,
modules_dim: Optional[Dict[str, int]] = None,
modules_alpha: Optional[Dict[str, int]] = None,
train_blocks: Optional[str] = None,
split_qkv: bool = False,
train_t5xxl: bool = False,
varbose: Optional[bool] = False,
only_if_contains: Optional[List[str]] = None,
) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.conv_lora_dim = conv_lora_dim
self.conv_alpha = conv_alpha
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.train_blocks = train_blocks if train_blocks is not None else "all"
self.split_qkv = split_qkv
self.train_t5xxl = train_t5xxl
self.loraplus_lr_ratio = None
self.loraplus_unet_lr_ratio = None
self.loraplus_text_encoder_lr_ratio = None
self.only_if_contains = only_if_contains
if modules_dim is not None:
logger.info(f"create LoRA network from weights")
else:
logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
logger.info(
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}"
)
# if self.conv_lora_dim is not None:
# logger.info(
# f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}"
# )
if self.split_qkv:
logger.info(f"split qkv for LoRA")
if self.train_blocks is not None:
logger.info(f"train {self.train_blocks} blocks only")
if train_t5xxl:
logger.info(f"train T5XXL as well")
#self.only_if_contains = ["lora_unet_single_blocks_20_linear2"]
# create module instances
def create_modules(
is_flux: bool, text_encoder_idx: Optional[int], root_module: torch.nn.Module, target_replace_modules: List[str]
) -> List[LoRAModule]:
prefix = (
self.LORA_PREFIX_FLUX
if is_flux
else (self.LORA_PREFIX_TEXT_ENCODER_CLIP if text_encoder_idx == 0 else self.LORA_PREFIX_TEXT_ENCODER_T5)
)
loras = []
skipped = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear"
is_conv2d = child_module.__class__.__name__ == "Conv2d"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if is_linear or is_conv2d:
lora_name = prefix + "." + name + "." + child_name
lora_name = lora_name.replace(".", "_")
#lora_unet_single_blocks_20_linear2
if "unet" in lora_name and (self.only_if_contains is not None and not any(word in lora_name for word in self.only_if_contains)):
continue
dim = None
alpha = None
if modules_dim is not None:
# モジュール指定あり
if lora_name in modules_dim:
dim = modules_dim[lora_name]
alpha = modules_alpha[lora_name]
else:
# 通常、すべて対象とする
if is_linear or is_conv2d_1x1:
dim = self.lora_dim
alpha = self.alpha
elif self.conv_lora_dim is not None:
dim = self.conv_lora_dim
alpha = self.conv_alpha
if dim is None or dim == 0:
# skipした情報を出力
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None):
skipped.append(lora_name)
continue
# qkv split
split_dims = None
if is_flux and split_qkv:
if "double" in lora_name and "qkv" in lora_name:
split_dims = [3072] * 3
elif "single" in lora_name and "linear1" in lora_name:
split_dims = [3072] * 3 + [12288]
lora = module_class(
lora_name,
child_module,
self.multiplier,
dim,
alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
split_dims=split_dims,
)
loras.append(lora)
return loras, skipped
# create LoRA for text encoder
# 毎回すべてのモジュールを作るのは無駄なので要検討
self.text_encoder_loras: List[Union[LoRAModule, LoRAInfModule]] = []
skipped_te = []
for i, text_encoder in enumerate(text_encoders):
index = i
if not train_t5xxl and index > 0: # 0: CLIP, 1: T5XXL, so we skip T5XXL if train_t5xxl is False
break
logger.info(f"create LoRA for Text Encoder {index+1}:")
text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
logger.info(f"create LoRA for Text Encoder {index+1}: {len(text_encoder_loras)} modules.")
self.text_encoder_loras.extend(text_encoder_loras)
skipped_te += skipped
# create LoRA for U-Net
if self.train_blocks == "all":
target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_DOUBLE + LoRANetwork.FLUX_TARGET_REPLACE_MODULE_SINGLE
elif self.train_blocks == "single":
target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_SINGLE
elif self.train_blocks == "double":
target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_DOUBLE
self.unet_loras: List[Union[LoRAModule, LoRAInfModule]]
self.unet_loras, skipped_un = create_modules(True, None, unet, target_replace_modules)
logger.info(f"create LoRA for FLUX {self.train_blocks} blocks: {len(self.unet_loras)} modules.")
#print(self.unet_loras)
skipped = skipped_te + skipped_un
if varbose and len(skipped) > 0:
logger.warning(
f"because dim (rank) is 0, {len(skipped)} LoRA modules are skipped / dim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:"
)
for name in skipped:
logger.info(f"\t{name}")
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def set_enabled(self, is_enabled):
for lora in self.text_encoder_loras + self.unet_loras:
lora.enabled = is_enabled
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def load_state_dict(self, state_dict, strict=True):
# override to convert original weight to split qkv
if not self.split_qkv:
return super().load_state_dict(state_dict, strict)
# split qkv
for key in list(state_dict.keys()):
if "double" in key and "qkv" in key:
split_dims = [3072] * 3
elif "single" in key and "linear1" in key:
split_dims = [3072] * 3 + [12288]
else:
continue
weight = state_dict[key]
lora_name = key.split(".")[0]
if "lora_down" in key and "weight" in key:
# dense weight (rank*3, in_dim)
split_weight = torch.chunk(weight, len(split_dims), dim=0)
for i, split_w in enumerate(split_weight):
state_dict[f"{lora_name}.lora_down.{i}.weight"] = split_w
del state_dict[key]
# print(f"split {key}: {weight.shape} to {[w.shape for w in split_weight]}")
elif "lora_up" in key and "weight" in key:
# sparse weight (out_dim=sum(split_dims), rank*3)
rank = weight.size(1) // len(split_dims)
i = 0
for j in range(len(split_dims)):
state_dict[f"{lora_name}.lora_up.{j}.weight"] = weight[i : i + split_dims[j], j * rank : (j + 1) * rank]
i += split_dims[j]
del state_dict[key]
# # check is sparse
# i = 0
# is_zero = True
# for j in range(len(split_dims)):
# for k in range(len(split_dims)):
# if j == k:
# continue
# is_zero = is_zero and torch.all(weight[i : i + split_dims[j], k * rank : (k + 1) * rank] == 0)
# i += split_dims[j]
# if not is_zero:
# logger.warning(f"weight is not sparse: {key}")
# else:
# logger.info(f"weight is sparse: {key}")
# print(
# f"split {key}: {weight.shape} to {[state_dict[k].shape for k in [f'{lora_name}.lora_up.{j}.weight' for j in range(len(split_dims))]]}"
# )
# alpha is unchanged
return super().load_state_dict(state_dict, strict)
def state_dict(self, destination=None, prefix="", keep_vars=False):
if not self.split_qkv:
return super().state_dict(destination, prefix, keep_vars)
# merge qkv
state_dict = super().state_dict(destination, prefix, keep_vars)
new_state_dict = {}
for key in list(state_dict.keys()):
if "double" in key and "qkv" in key:
split_dims = [3072] * 3
elif "single" in key and "linear1" in key:
split_dims = [3072] * 3 + [12288]
else:
new_state_dict[key] = state_dict[key]
continue
if key not in state_dict:
continue # already merged
lora_name = key.split(".")[0]
# (rank, in_dim) * 3
down_weights = [state_dict.pop(f"{lora_name}.lora_down.{i}.weight") for i in range(len(split_dims))]
# (split dim, rank) * 3
up_weights = [state_dict.pop(f"{lora_name}.lora_up.{i}.weight") for i in range(len(split_dims))]
alpha = state_dict.pop(f"{lora_name}.alpha")
# merge down weight
down_weight = torch.cat(down_weights, dim=0) # (rank, split_dim) * 3 -> (rank*3, sum of split_dim)
# merge up weight (sum of split_dim, rank*3)
rank = up_weights[0].size(1)
up_weight = torch.zeros((sum(split_dims), down_weight.size(0)), device=down_weight.device, dtype=down_weight.dtype)
i = 0
for j in range(len(split_dims)):
up_weight[i : i + split_dims[j], j * rank : (j + 1) * rank] = up_weights[j]
i += split_dims[j]
new_state_dict[f"{lora_name}.lora_down.weight"] = down_weight
new_state_dict[f"{lora_name}.lora_up.weight"] = up_weight
new_state_dict[f"{lora_name}.alpha"] = alpha
# print(
# f"merged {lora_name}: {lora_name}, {[w.shape for w in down_weights]}, {[w.shape for w in up_weights]} to {down_weight.shape}, {up_weight.shape}"
# )
print(f"new key: {lora_name}.lora_down.weight, {lora_name}.lora_up.weight, {lora_name}.alpha")
return new_state_dict
def apply_to(self, text_encoders, flux, apply_text_encoder=True, apply_unet=True):
if apply_text_encoder:
logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
# マージできるかどうかを返す
def is_mergeable(self):
return True
# TODO refactor to common function with apply_to
def merge_to(self, text_encoders, flux, weights_sd, dtype=None, device=None):
apply_text_encoder = apply_unet = False
for key in weights_sd.keys():
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP) or key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_T5):
apply_text_encoder = True
elif key.startswith(LoRANetwork.LORA_PREFIX_FLUX):
apply_unet = True
if apply_text_encoder:
logger.info("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
sd_for_lora = {}
for key in weights_sd.keys():
if key.startswith(lora.lora_name):
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
lora.merge_to(sd_for_lora, dtype, device)
logger.info(f"weights are merged")
def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio):
self.loraplus_lr_ratio = loraplus_lr_ratio
self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio
self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio
logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio}")
logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}")
def prepare_optimizer_params_with_multiple_te_lrs(self, text_encoder_lr, unet_lr, default_lr):
# make sure text_encoder_lr as list of two elements
# if float, use the same value for both text encoders
if text_encoder_lr is None or (isinstance(text_encoder_lr, list) and len(text_encoder_lr) == 0):
text_encoder_lr = [default_lr, default_lr]
elif isinstance(text_encoder_lr, float) or isinstance(text_encoder_lr, int):
text_encoder_lr = [float(text_encoder_lr), float(text_encoder_lr)]
elif len(text_encoder_lr) == 1:
text_encoder_lr = [text_encoder_lr[0], text_encoder_lr[0]]
self.requires_grad_(True)
all_params = []
lr_descriptions = []
def assemble_params(loras, lr, loraplus_ratio):
param_groups = {"lora": {}, "plus": {}}
for lora in loras:
for name, param in lora.named_parameters():
if loraplus_ratio is not None and "lora_up" in name:
param_groups["plus"][f"{lora.lora_name}.{name}"] = param
else:
param_groups["lora"][f"{lora.lora_name}.{name}"] = param
params = []
descriptions = []
for key in param_groups.keys():
param_data = {"params": param_groups[key].values()}
if len(param_data["params"]) == 0:
continue
if lr is not None:
if key == "plus":
param_data["lr"] = lr * loraplus_ratio
else:
param_data["lr"] = lr
if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None:
logger.info("NO LR skipping!")
continue
params.append(param_data)
descriptions.append("plus" if key == "plus" else "")
return params, descriptions
if self.text_encoder_loras:
loraplus_lr_ratio = self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio
# split text encoder loras for te1 and te3
te1_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_CLIP)]
te3_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_T5)]
if len(te1_loras) > 0:
logger.info(f"Text Encoder 1 (CLIP-L): {len(te1_loras)} modules, LR {text_encoder_lr[0]}")
params, descriptions = assemble_params(te1_loras, text_encoder_lr[0], loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["textencoder 1 " + (" " + d if d else "") for d in descriptions])
if len(te3_loras) > 0:
logger.info(f"Text Encoder 2 (T5XXL): {len(te3_loras)} modules, LR {text_encoder_lr[1]}")
params, descriptions = assemble_params(te3_loras, text_encoder_lr[1], loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["textencoder 2 " + (" " + d if d else "") for d in descriptions])
if self.unet_loras:
params, descriptions = assemble_params(
self.unet_loras,
unet_lr if unet_lr is not None else default_lr,
self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio,
)
all_params.extend(params)
lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions])
return all_params, lr_descriptions
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def backup_weights(self):
# 重みのバックアップを行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not hasattr(org_module, "_lora_org_weight"):
sd = org_module.state_dict()
org_module._lora_org_weight = sd["weight"].detach().clone()
org_module._lora_restored = True
def restore_weights(self):
# 重みのリストアを行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not org_module._lora_restored:
sd = org_module.state_dict()
sd["weight"] = org_module._lora_org_weight
org_module.load_state_dict(sd)
org_module._lora_restored = True
def pre_calculation(self):
# 事前計算を行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
sd = org_module.state_dict()
org_weight = sd["weight"]
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype)
sd["weight"] = org_weight + lora_weight
assert sd["weight"].shape == org_weight.shape
org_module.load_state_dict(sd)
org_module._lora_restored = False
lora.enabled = False
def apply_max_norm_regularization(self, max_norm_value, device):
downkeys = []
upkeys = []
alphakeys = []
norms = []
keys_scaled = 0
state_dict = self.state_dict()
for key in state_dict.keys():
if "lora_down" in key and "weight" in key:
downkeys.append(key)
upkeys.append(key.replace("lora_down", "lora_up"))
alphakeys.append(key.replace("lora_down.weight", "alpha"))
for i in range(len(downkeys)):
down = state_dict[downkeys[i]].to(device)
up = state_dict[upkeys[i]].to(device)
alpha = state_dict[alphakeys[i]].to(device)
dim = down.shape[0]
scale = alpha / dim
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
updown *= scale
norm = updown.norm().clamp(min=max_norm_value / 2)
desired = torch.clamp(norm, max=max_norm_value)
ratio = desired.cpu() / norm.cpu()
sqrt_ratio = ratio**0.5
if ratio != 1:
keys_scaled += 1
state_dict[upkeys[i]] *= sqrt_ratio
state_dict[downkeys[i]] *= sqrt_ratio
scalednorm = updown.norm() * ratio
norms.append(scalednorm.item())
return keys_scaled, sum(norms) / len(norms), max(norms)
def precalculate_safetensors_hashes(tensors, metadata):
"""Precalculate the model hashes needed by sd-webui-additional-networks to
save time on indexing the model later."""
import hashlib
import safetensors.torch
from io import BytesIO
# Retain only training metadata for hash calculation
metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")}
bytes = safetensors.torch.save(tensors, metadata)
b = BytesIO(bytes)
def addnet_hash_legacy(b):
"""Old model hash used by sd-webui-additional-networks for .safetensors format files"""
m = hashlib.sha256()
b.seek(0x100000)
m.update(b.read(0x10000))
return m.hexdigest()[0:8]
def addnet_hash_safetensors(b):
"""New model hash used by sd-webui-additional-networks for .safetensors format files"""
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
b.seek(0)
header = b.read(8)
n = int.from_bytes(header, "little")
offset = n + 8
b.seek(offset)
for chunk in iter(lambda: b.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
model_hash = addnet_hash_safetensors(b)
legacy_hash = addnet_hash_legacy(b)
return model_hash, legacy_hash