ml_test / nodes.py
tonyshark's picture
Upload 132 files
cc69848 verified
import os
import torch
from torchvision import transforms
import folder_paths
import comfy.model_management as mm
import comfy.utils
import toml
import json
import time
import shutil
import shlex
from pathlib import Path
script_directory = os.path.dirname(os.path.abspath(__file__))
from .flux_train_network_comfy import FluxNetworkTrainer
from .library import flux_train_utils as flux_train_utils
from .flux_train_comfy import FluxTrainer
from .flux_train_comfy import setup_parser as train_setup_parser
from .library.device_utils import init_ipex
init_ipex()
from .library import train_util
from .train_network import setup_parser as train_network_setup_parser
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import io
from PIL import Image
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class FluxTrainModelSelect:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"transformer": (folder_paths.get_filename_list("unet"), ),
"vae": (folder_paths.get_filename_list("vae"), ),
"clip_l": (folder_paths.get_filename_list("clip"), ),
"t5": (folder_paths.get_filename_list("clip"), ),
},
"optional": {
"lora_path": ("STRING",{"multiline": True, "forceInput": True, "default": "", "tooltip": "pre-trained LoRA path to load (network_weights)"}),
}
}
RETURN_TYPES = ("TRAIN_FLUX_MODELS",)
RETURN_NAMES = ("flux_models",)
FUNCTION = "loadmodel"
CATEGORY = "FluxTrainer"
def loadmodel(self, transformer, vae, clip_l, t5, lora_path=""):
transformer_path = folder_paths.get_full_path("unet", transformer)
vae_path = folder_paths.get_full_path("vae", vae)
clip_path = folder_paths.get_full_path("clip", clip_l)
t5_path = folder_paths.get_full_path("clip", t5)
flux_models = {
"transformer": transformer_path,
"vae": vae_path,
"clip_l": clip_path,
"t5": t5_path,
"lora_path": lora_path
}
return (flux_models,)
class TrainDatasetGeneralConfig:
queue_counter = 0
@classmethod
def IS_CHANGED(s, reset_on_queue=False, **kwargs):
if reset_on_queue:
s.queue_counter += 1
print(f"queue_counter: {s.queue_counter}")
return s.queue_counter
@classmethod
def INPUT_TYPES(s):
return {"required": {
"color_aug": ("BOOLEAN",{"default": False, "tooltip": "enable weak color augmentation"}),
"flip_aug": ("BOOLEAN",{"default": False, "tooltip": "enable horizontal flip augmentation"}),
"shuffle_caption": ("BOOLEAN",{"default": False, "tooltip": "shuffle caption"}),
"caption_dropout_rate": ("FLOAT",{"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01,"tooltip": "tag dropout rate"}),
"alpha_mask": ("BOOLEAN",{"default": False, "tooltip": "use alpha channel as mask for training"}),
},
"optional": {
"reset_on_queue": ("BOOLEAN",{"default": False, "tooltip": "Force refresh of everything for cleaner queueing"}),
"caption_extension": ("STRING",{"default": ".txt", "tooltip": "extension for caption files"}),
}
}
RETURN_TYPES = ("JSON",)
RETURN_NAMES = ("dataset_general",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, shuffle_caption, caption_dropout_rate, color_aug, flip_aug, alpha_mask, reset_on_queue=False, caption_extension=".txt"):
dataset = {
"general": {
"shuffle_caption": shuffle_caption,
"caption_extension": caption_extension,
"keep_tokens_separator": "|||",
"caption_dropout_rate": caption_dropout_rate,
"color_aug": color_aug,
"flip_aug": flip_aug,
},
"datasets": []
}
dataset_json = json.dumps(dataset, indent=2)
#print(dataset_json)
dataset_config = {
"datasets": dataset_json,
"alpha_mask": alpha_mask
}
return (dataset_config,)
class TrainDatasetRegularization:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"dataset_path": ("STRING",{"multiline": True, "default": "", "tooltip": "path to dataset, root is the 'ComfyUI' folder, with windows portable 'ComfyUI_windows_portable'"}),
"class_tokens": ("STRING",{"multiline": True, "default": "", "tooltip": "aka trigger word, if specified, will be added to the start of each caption, if no captions exist, will be used on it's own"}),
"num_repeats": ("INT", {"default": 1, "min": 1, "tooltip": "number of times to repeat dataset for an epoch"}),
},
}
RETURN_TYPES = ("JSON",)
RETURN_NAMES = ("subset",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, dataset_path, class_tokens, num_repeats):
reg_subset = {
"image_dir": dataset_path,
"class_tokens": class_tokens,
"num_repeats": num_repeats,
"is_reg": True
}
return reg_subset,
class TrainDatasetAdd:
def __init__(self):
self.previous_dataset_signature = None
@classmethod
def INPUT_TYPES(s):
return {"required": {
"dataset_config": ("JSON",),
"width": ("INT",{"min": 64, "default": 1024, "tooltip": "base resolution width"}),
"height": ("INT",{"min": 64, "default": 1024, "tooltip": "base resolution height"}),
"batch_size": ("INT",{"min": 1, "default": 2, "tooltip": "Higher batch size uses more memory and generalizes the training more"}),
"dataset_path": ("STRING",{"multiline": True, "default": "", "tooltip": "path to dataset, root is the 'ComfyUI' folder, with windows portable 'ComfyUI_windows_portable'"}),
"class_tokens": ("STRING",{"multiline": True, "default": "", "tooltip": "aka trigger word, if specified, will be added to the start of each caption, if no captions exist, will be used on it's own"}),
"enable_bucket": ("BOOLEAN",{"default": True, "tooltip": "enable buckets for multi aspect ratio training"}),
"bucket_no_upscale": ("BOOLEAN",{"default": False, "tooltip": "don't allow upscaling when bucketing"}),
"num_repeats": ("INT", {"default": 1, "min": 1, "tooltip": "number of times to repeat dataset for an epoch"}),
"min_bucket_reso": ("INT", {"default": 256, "min": 64, "max": 4096, "step": 8, "tooltip": "min bucket resolution"}),
"max_bucket_reso": ("INT", {"default": 1024, "min": 64, "max": 4096, "step": 8, "tooltip": "max bucket resolution"}),
},
"optional": {
"regularization": ("JSON", {"tooltip": "reg data dir"}),
}
}
RETURN_TYPES = ("JSON",)
RETURN_NAMES = ("dataset",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, dataset_config, dataset_path, class_tokens, width, height, batch_size, num_repeats, enable_bucket,
bucket_no_upscale, min_bucket_reso, max_bucket_reso, regularization=None):
new_dataset = {
"resolution": (width, height),
"batch_size": batch_size,
"enable_bucket": enable_bucket,
"bucket_no_upscale": bucket_no_upscale,
"min_bucket_reso": min_bucket_reso,
"max_bucket_reso": max_bucket_reso,
"subsets": [
{
"image_dir": dataset_path,
"class_tokens": class_tokens,
"num_repeats": num_repeats
}
]
}
if regularization is not None:
new_dataset["subsets"].append(regularization)
# Generate a signature for the new dataset
new_dataset_signature = self.generate_signature(new_dataset)
# Load the existing datasets
existing_datasets = json.loads(dataset_config["datasets"])
# Remove the previously added dataset if it exists
if self.previous_dataset_signature:
existing_datasets["datasets"] = [
ds for ds in existing_datasets["datasets"]
if self.generate_signature(ds) != self.previous_dataset_signature
]
# Add the new dataset
existing_datasets["datasets"].append(new_dataset)
# Store the new dataset signature for future runs
self.previous_dataset_signature = new_dataset_signature
# Convert back to JSON and update dataset_config
updated_dataset_json = json.dumps(existing_datasets, indent=2)
dataset_config["datasets"] = updated_dataset_json
return dataset_config,
def generate_signature(self, dataset):
# Create a unique signature for the dataset based on its attributes
return json.dumps(dataset, sort_keys=True)
class OptimizerConfig:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"optimizer_type": (["adamw8bit", "adamw","prodigy", "CAME", "Lion8bit", "Lion", "adamwschedulefree", "sgdschedulefree", "AdEMAMix8bit", "PagedAdEMAMix8bit", "ProdigyPlusScheduleFree"], {"default": "adamw8bit", "tooltip": "optimizer type"}),
"max_grad_norm": ("FLOAT",{"default": 1.0, "min": 0.0, "tooltip": "gradient clipping"}),
"lr_scheduler": (["constant", "cosine", "cosine_with_restarts", "polynomial", "constant_with_warmup"], {"default": "constant", "tooltip": "learning rate scheduler"}),
"lr_warmup_steps": ("INT",{"default": 0, "min": 0, "tooltip": "learning rate warmup steps"}),
"lr_scheduler_num_cycles": ("INT",{"default": 1, "min": 1, "tooltip": "learning rate scheduler num cycles"}),
"lr_scheduler_power": ("FLOAT",{"default": 1.0, "min": 0.0, "tooltip": "learning rate scheduler power"}),
"min_snr_gamma": ("FLOAT",{"default": 5.0, "min": 0.0, "step": 0.01, "tooltip": "gamma for reducing the weight of high loss timesteps. Lower numbers have stronger effect. 5 is recommended by the paper"}),
"extra_optimizer_args": ("STRING",{"multiline": True, "default": "", "tooltip": "additional optimizer args"}),
},
}
RETURN_TYPES = ("ARGS",)
RETURN_NAMES = ("optimizer_settings",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, min_snr_gamma, extra_optimizer_args, **kwargs):
kwargs["min_snr_gamma"] = min_snr_gamma if min_snr_gamma != 0.0 else None
kwargs["optimizer_args"] = [arg.strip() for arg in extra_optimizer_args.strip().split('|') if arg.strip()]
return (kwargs,)
class OptimizerConfigAdafactor:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"max_grad_norm": ("FLOAT",{"default": 0.0, "min": 0.0, "tooltip": "gradient clipping"}),
"lr_scheduler": (["constant", "cosine", "cosine_with_restarts", "polynomial", "constant_with_warmup", "adafactor"], {"default": "constant_with_warmup", "tooltip": "learning rate scheduler"}),
"lr_warmup_steps": ("INT",{"default": 0, "min": 0, "tooltip": "learning rate warmup steps"}),
"lr_scheduler_num_cycles": ("INT",{"default": 1, "min": 1, "tooltip": "learning rate scheduler num cycles"}),
"lr_scheduler_power": ("FLOAT",{"default": 1.0, "min": 0.0, "tooltip": "learning rate scheduler power"}),
"relative_step": ("BOOLEAN",{"default": False, "tooltip": "relative step"}),
"scale_parameter": ("BOOLEAN",{"default": False, "tooltip": "scale parameter"}),
"warmup_init": ("BOOLEAN",{"default": False, "tooltip": "warmup init"}),
"clip_threshold": ("FLOAT",{"default": 1.0, "min": 0.0, "tooltip": "clip threshold"}),
"min_snr_gamma": ("FLOAT",{"default": 5.0, "min": 0.0, "step": 0.01, "tooltip": "gamma for reducing the weight of high loss timesteps. Lower numbers have stronger effect. 5 is recommended by the paper"}),
"extra_optimizer_args": ("STRING",{"multiline": True, "default": "", "tooltip": "additional optimizer args"}),
},
}
RETURN_TYPES = ("ARGS",)
RETURN_NAMES = ("optimizer_settings",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, relative_step, scale_parameter, warmup_init, clip_threshold, min_snr_gamma, extra_optimizer_args, **kwargs):
kwargs["optimizer_type"] = "adafactor"
extra_args = [arg.strip() for arg in extra_optimizer_args.strip().split('|') if arg.strip()]
node_args = [
f"relative_step={relative_step}",
f"scale_parameter={scale_parameter}",
f"warmup_init={warmup_init}",
f"clip_threshold={clip_threshold}"
]
kwargs["optimizer_args"] = node_args + extra_args
kwargs["min_snr_gamma"] = min_snr_gamma if min_snr_gamma != 0.0 else None
return (kwargs,)
class FluxTrainerLossConfig:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"loss_type": (["l2", "huber","smooth_l1"], {"default": "huber", "tooltip": "The type of loss function to use"}),
"huber_schedule": (["snr", "exponential", "constant"], {"default": "exponential", "tooltip": "The scheduling method for Huber loss (constant, exponential, or SNR-based). Only used when loss_type is 'huber' or 'smooth_l1'. default is snr"}),
"huber_c": ("FLOAT",{"default": 0.25, "min": 0.0, "step": 0.01, "tooltip": "The Huber loss decay parameter. Only used if one of the huber loss modes (huber or smooth l1) is selected with loss_type. default is 0.1"}),
"huber_scale": ("FLOAT",{"default": 1.75, "min": 0.0, "step": 0.01, "tooltip": "The Huber loss scale parameter. Only used if one of the huber loss modes (huber or smooth l1) is selected with loss_type. default is 1.0"}),
},
}
RETURN_TYPES = ("ARGS",)
RETURN_NAMES = ("loss_args",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, **kwargs):
return (kwargs,)
class OptimizerConfigProdigy:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"max_grad_norm": ("FLOAT",{"default": 0.0, "min": 0.0, "tooltip": "gradient clipping"}),
"lr_scheduler": (["constant", "cosine", "cosine_with_restarts", "polynomial", "constant_with_warmup", "adafactor"], {"default": "constant", "tooltip": "learning rate scheduler"}),
"lr_warmup_steps": ("INT",{"default": 0, "min": 0, "tooltip": "learning rate warmup steps"}),
"lr_scheduler_num_cycles": ("INT",{"default": 1, "min": 1, "tooltip": "learning rate scheduler num cycles"}),
"lr_scheduler_power": ("FLOAT",{"default": 1.0, "min": 0.0, "tooltip": "learning rate scheduler power"}),
"weight_decay": ("FLOAT",{"default": 0.0, "step": 0.0001, "tooltip": "weight decay (L2 penalty)"}),
"decouple": ("BOOLEAN",{"default": True, "tooltip": "use AdamW style weight decay"}),
"use_bias_correction": ("BOOLEAN",{"default": False, "tooltip": "turn on Adam's bias correction"}),
"min_snr_gamma": ("FLOAT",{"default": 5.0, "min": 0.0, "step": 0.01, "tooltip": "gamma for reducing the weight of high loss timesteps. Lower numbers have stronger effect. 5 is recommended by the paper"}),
"extra_optimizer_args": ("STRING",{"multiline": True, "default": "", "tooltip": "additional optimizer args"}),
},
}
RETURN_TYPES = ("ARGS",)
RETURN_NAMES = ("optimizer_settings",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, weight_decay, decouple, min_snr_gamma, use_bias_correction, extra_optimizer_args, **kwargs):
kwargs["optimizer_type"] = "prodigy"
extra_args = [arg.strip() for arg in extra_optimizer_args.strip().split('|') if arg.strip()]
node_args = [
f"weight_decay={weight_decay}",
f"decouple={decouple}",
f"use_bias_correction={use_bias_correction}"
]
kwargs["optimizer_args"] = node_args + extra_args
kwargs["min_snr_gamma"] = min_snr_gamma if min_snr_gamma != 0.0 else None
return (kwargs,)
class TrainNetworkConfig:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_type": (["lora", "LyCORIS/LoKr", "LyCORIS/Locon", "LyCORIS/LoHa"], {"default": "lora", "tooltip": "network type"}),
"lycoris_preset": (["full", "full-lin", "attn-mlp", "attn-only"], {"default": "attn-mlp"}),
"factor": ("INT",{"default": -1, "min": -1, "max": 16, "step": 1, "tooltip": "LoKr factor"}),
"extra_network_args": ("STRING",{"multiline": True, "default": "", "tooltip": "additional network args"}),
},
}
RETURN_TYPES = ("NETWORK_CONFIG",)
RETURN_NAMES = ("network_config",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, network_type, extra_network_args, lycoris_preset, factor):
extra_args = [arg.strip() for arg in extra_network_args.strip().split('|') if arg.strip()]
if network_type == "lora":
network_module = ".networks.lora"
elif network_type == "LyCORIS/LoKr":
network_module = ".lycoris.kohya"
algo = "lokr"
elif network_type == "LyCORIS/Locon":
network_module = ".lycoris.kohya"
algo = "locon"
elif network_type == "LyCORIS/LoHa":
network_module = ".lycoris.kohya"
algo = "loha"
network_args = [
f"algo={algo}",
f"factor={factor}",
f"preset={lycoris_preset}"
]
network_config = {
"network_module": network_module,
"network_args": network_args + extra_args
}
return (network_config,)
class OptimizerConfigProdigyPlusScheduleFree:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"lr": ("FLOAT",{"default": 1.0, "min": 0.0, "step": 1e-7, "tooltip": "Learning rate adjustment parameter. Increases or decreases the Prodigy learning rate."}),
"max_grad_norm": ("FLOAT",{"default": 0.0, "min": 0.0, "tooltip": "gradient clipping"}),
"prodigy_steps": ("INT",{"default": 0, "min": 0, "tooltip": "Freeze Prodigy stepsize adjustments after a certain optimiser step."}),
"d0": ("FLOAT",{"default": 1e-6, "min": 0.0,"step": 1e-7, "tooltip": "initial learning rate"}),
"d_coeff": ("FLOAT",{"default": 1.0, "min": 0.0, "step": 1e-7, "tooltip": "Coefficient in the expression for the estimate of d (default 1.0). Values such as 0.5 and 2.0 typically work as well. Changing this parameter is the preferred way to tune the method."}),
"split_groups": ("BOOLEAN",{"default": True, "tooltip": "Track individual adaptation values for each parameter group."}),
#"beta3": ("FLOAT",{"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.0001, "tooltip": " Coefficient for computing the Prodigy stepsize using running averages. If set to None, uses the value of square root of beta2 (default: None)."}),
#"beta4": ("FLOAT",{"default": 0, "min": 0.0, "max": 1.0, "step": 0.0001, "tooltip": "Coefficient for updating the learning rate from Prodigy's adaptive stepsize. Smooths out spikes in learning rate adjustments. If set to None, beta1 is used instead. (default 0, which disables smoothing and uses original Prodigy behaviour)."}),
"use_bias_correction": ("BOOLEAN",{"default": False, "tooltip": "Use the RAdam variant of schedule-free"}),
"min_snr_gamma": ("FLOAT",{"default": 5.0, "min": 0.0, "step": 0.01, "tooltip": "gamma for reducing the weight of high loss timesteps. Lower numbers have stronger effect. 5 is recommended by the paper"}),
"use_stableadamw": ("BOOLEAN",{"default": True, "tooltip": "Scales parameter updates by the root-mean-square of the normalised gradient, in essence identical to Adafactor's gradient scaling. Set to False if the adaptive learning rate never improves."}),
"use_cautious" : ("BOOLEAN",{"default": False, "tooltip": "Experimental. Perform 'cautious' updates, as proposed in https://arxiv.org/pdf/2411.16085. Modifies the update to isolate and boost values that align with the current gradient."}),
"use_adopt": ("BOOLEAN",{"default": False, "tooltip": "Experimental. Performs a modified step where the second moment is updated after the parameter update, so as not to include the current gradient in the denominator. This is a partial implementation of ADOPT (https://arxiv.org/abs/2411.02853), as we don't have a first moment to use for the update."}),
"use_grams": ("BOOLEAN",{"default": False, "tooltip": "Perform 'grams' updates, as proposed in https://arxiv.org/abs/2412.17107. Modifies the update using sign operations that align with the current gradient. Note that we do not have access to a first moment, so this deviates from the paper (we apply the sign directly to the update). May have a limited effect."}),
"stochastic_rounding": ("BOOLEAN",{"default": True, "tooltip": "Use stochastic rounding for bfloat16 weights"}),
"use_orthograd": ("BOOLEAN",{"default": False, "tooltip": "Experimental. Updates weights using the component of the gradient that is orthogonal to the current weight direction, as described in (https://arxiv.org/pdf/2501.04697). Can help prevent overfitting and improve generalisation."}),
"use_focus ": ("BOOLEAN",{"default": False, "tooltip": "Experimental. Modifies the update step to better handle noise at large step sizes. (https://arxiv.org/abs/2501.12243). This method is incompatible with factorisation, Muon and Adam-atan2."}),
"extra_optimizer_args": ("STRING",{"multiline": True, "default": "", "tooltip": "additional optimizer args"}),
},
}
RETURN_TYPES = ("ARGS",)
RETURN_NAMES = ("optimizer_settings",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, min_snr_gamma, use_bias_correction, extra_optimizer_args, **kwargs):
kwargs["optimizer_type"] = "ProdigyPlusScheduleFree"
kwargs["lr_scheduler"] = "constant"
extra_args = [arg.strip() for arg in extra_optimizer_args.strip().split('|') if arg.strip()]
node_args = [
f"use_bias_correction={use_bias_correction}",
]
kwargs["optimizer_args"] = node_args + extra_args
kwargs["min_snr_gamma"] = min_snr_gamma if min_snr_gamma != 0.0 else None
return (kwargs,)
class InitFluxLoRATraining:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"flux_models": ("TRAIN_FLUX_MODELS",),
"dataset": ("JSON",),
"optimizer_settings": ("ARGS",),
"output_name": ("STRING", {"default": "flux_lora", "multiline": False}),
"output_dir": ("STRING", {"default": "flux_trainer_output", "multiline": False, "tooltip": "path to dataset, root is the 'ComfyUI' folder, with windows portable 'ComfyUI_windows_portable'"}),
"network_dim": ("INT", {"default": 4, "min": 1, "max": 100000, "step": 1, "tooltip": "network dim"}),
"network_alpha": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2048.0, "step": 0.01, "tooltip": "network alpha"}),
"learning_rate": ("FLOAT", {"default": 4e-4, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "learning rate"}),
"max_train_steps": ("INT", {"default": 1500, "min": 1, "max": 100000, "step": 1, "tooltip": "max number of training steps"}),
"apply_t5_attn_mask": ("BOOLEAN", {"default": True, "tooltip": "apply t5 attention mask"}),
"cache_latents": (["disk", "memory", "disabled"], {"tooltip": "caches text encoder outputs"}),
"cache_text_encoder_outputs": (["disk", "memory", "disabled"], {"tooltip": "caches text encoder outputs"}),
"blocks_to_swap": ("INT", {"default": 0, "tooltip": "Previously known as split_mode, number of blocks to swap to save memory, default to enable is 18"}),
"weighting_scheme": (["logit_normal", "sigma_sqrt", "mode", "cosmap", "none"],),
"logit_mean": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "mean to use when using the logit_normal weighting scheme"}),
"logit_std": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01,"tooltip": "std to use when using the logit_normal weighting scheme"}),
"mode_scale": ("FLOAT", {"default": 1.29, "min": 0.0, "max": 10.0, "step": 0.01, "tooltip": "Scale of mode weighting scheme. Only effective when using the mode as the weighting_scheme"}),
"timestep_sampling": (["sigmoid", "uniform", "sigma", "shift", "flux_shift"], {"tooltip": "Method to sample timesteps: sigma-based, uniform random, sigmoid of random normal and shift of sigmoid (recommend value of 3.1582 for discrete_flow_shift)"}),
"sigmoid_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.1, "tooltip": "Scale factor for sigmoid timestep sampling (only used when timestep-sampling is sigmoid"}),
"model_prediction_type": (["raw", "additive", "sigma_scaled"], {"tooltip": "How to interpret and process the model prediction: raw (use as is), additive (add to noisy input), sigma_scaled (apply sigma scaling)."}),
"guidance_scale": ("FLOAT", {"default": 1.0, "min": 1.0, "max": 32.0, "step": 0.01, "tooltip": "guidance scale, for Flux training should be 1.0"}),
"discrete_flow_shift": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.0001, "tooltip": "for the Euler Discrete Scheduler, default is 3.0"}),
"highvram": ("BOOLEAN", {"default": False, "tooltip": "memory mode"}),
"fp8_base": ("BOOLEAN", {"default": True, "tooltip": "use fp8 for base model"}),
"gradient_dtype": (["fp32", "fp16", "bf16"], {"default": "fp32", "tooltip": "the actual dtype training uses"}),
"save_dtype": (["fp32", "fp16", "bf16", "fp8_e4m3fn", "fp8_e5m2"], {"default": "bf16", "tooltip": "the dtype to save checkpoints as"}),
"attention_mode": (["sdpa", "xformers", "disabled"], {"default": "sdpa", "tooltip": "memory efficient attention mode"}),
"sample_prompts": ("STRING", {"multiline": True, "default": "illustration of a kitten | photograph of a turtle", "tooltip": "validation sample prompts, for multiple prompts, separate by `|`"}),
},
"optional": {
"additional_args": ("STRING", {"multiline": True, "default": "", "tooltip": "additional args to pass to the training command"}),
"resume_args": ("ARGS", {"default": "", "tooltip": "resume args to pass to the training command"}),
"train_text_encoder": (['disabled', 'clip_l', 'clip_l_fp8', 'clip_l+T5', 'clip_l+T5_fp8'], {"default": 'disabled', "tooltip": "also train the selected text encoders using specified dtype, T5 can not be trained without clip_l"}),
"clip_l_lr": ("FLOAT", {"default": 0, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "text encoder learning rate"}),
"T5_lr": ("FLOAT", {"default": 0, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "text encoder learning rate"}),
"block_args": ("ARGS", {"default": "", "tooltip": "limit the blocks used in the LoRA"}),
"gradient_checkpointing": (["enabled", "enabled_with_cpu_offloading", "disabled"], {"default": "enabled", "tooltip": "use gradient checkpointing"}),
"loss_args": ("ARGS", {"default": "", "tooltip": "loss args"}),
"network_config": ("NETWORK_CONFIG", {"tooltip": "additional network config"}),
},
"hidden": {
"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"
},
}
RETURN_TYPES = ("NETWORKTRAINER", "INT", "KOHYA_ARGS",)
RETURN_NAMES = ("network_trainer", "epochs_count", "args",)
FUNCTION = "init_training"
CATEGORY = "FluxTrainer"
def init_training(self, flux_models, dataset, optimizer_settings, sample_prompts, output_name, attention_mode,
gradient_dtype, save_dtype, additional_args=None, resume_args=None, train_text_encoder='disabled',
block_args=None, gradient_checkpointing="enabled", prompt=None, extra_pnginfo=None, clip_l_lr=0, T5_lr=0, loss_args=None, network_config=None, **kwargs):
mm.soft_empty_cache()
output_dir = os.path.abspath(kwargs.get("output_dir"))
os.makedirs(output_dir, exist_ok=True)
total, used, free = shutil.disk_usage(output_dir)
required_free_space = 2 * (2**30)
if free <= required_free_space:
raise ValueError(f"Insufficient disk space. Required: {required_free_space/2**30}GB. Available: {free/2**30}GB")
dataset_config = dataset["datasets"]
dataset_toml = toml.dumps(json.loads(dataset_config))
parser = train_network_setup_parser()
flux_train_utils.add_flux_train_arguments(parser)
if additional_args is not None:
print(f"additional_args: {additional_args}")
args, _ = parser.parse_known_args(args=shlex.split(additional_args))
else:
args, _ = parser.parse_known_args()
if kwargs.get("cache_latents") == "memory":
kwargs["cache_latents"] = True
kwargs["cache_latents_to_disk"] = False
elif kwargs.get("cache_latents") == "disk":
kwargs["cache_latents"] = True
kwargs["cache_latents_to_disk"] = True
kwargs["caption_dropout_rate"] = 0.0
kwargs["shuffle_caption"] = False
kwargs["token_warmup_step"] = 0.0
kwargs["caption_tag_dropout_rate"] = 0.0
else:
kwargs["cache_latents"] = False
kwargs["cache_latents_to_disk"] = False
if kwargs.get("cache_text_encoder_outputs") == "memory":
kwargs["cache_text_encoder_outputs"] = True
kwargs["cache_text_encoder_outputs_to_disk"] = False
elif kwargs.get("cache_text_encoder_outputs") == "disk":
kwargs["cache_text_encoder_outputs"] = True
kwargs["cache_text_encoder_outputs_to_disk"] = True
else:
kwargs["cache_text_encoder_outputs"] = False
kwargs["cache_text_encoder_outputs_to_disk"] = False
if '|' in sample_prompts:
prompts = sample_prompts.split('|')
else:
prompts = [sample_prompts]
config_dict = {
"sample_prompts": prompts,
"save_precision": save_dtype,
"mixed_precision": "bf16",
"num_cpu_threads_per_process": 1,
"pretrained_model_name_or_path": flux_models["transformer"],
"clip_l": flux_models["clip_l"],
"t5xxl": flux_models["t5"],
"ae": flux_models["vae"],
"save_model_as": "safetensors",
"persistent_data_loader_workers": False,
"max_data_loader_n_workers": 0,
"seed": 42,
"network_module": ".networks.lora_flux" if network_config is None else network_config["network_module"],
"dataset_config": dataset_toml,
"output_name": f"{output_name}_rank{kwargs.get('network_dim')}_{save_dtype}",
"loss_type": "l2",
"t5xxl_max_token_length": 512,
"alpha_mask": dataset["alpha_mask"],
"network_train_unet_only": True if train_text_encoder == 'disabled' else False,
"fp8_base_unet": True if "fp8" in train_text_encoder else False,
"disable_mmap_load_safetensors": False,
"network_args": None if network_config is None else network_config["network_args"],
}
attention_settings = {
"sdpa": {"mem_eff_attn": True, "xformers": False, "spda": True},
"xformers": {"mem_eff_attn": True, "xformers": True, "spda": False}
}
config_dict.update(attention_settings.get(attention_mode, {}))
gradient_dtype_settings = {
"fp16": {"full_fp16": True, "full_bf16": False, "mixed_precision": "fp16"},
"bf16": {"full_bf16": True, "full_fp16": False, "mixed_precision": "bf16"}
}
config_dict.update(gradient_dtype_settings.get(gradient_dtype, {}))
if train_text_encoder != 'disabled':
if T5_lr != "NaN":
config_dict["text_encoder_lr"] = clip_l_lr
if T5_lr != "NaN":
config_dict["text_encoder_lr"] = [clip_l_lr, T5_lr]
if gradient_checkpointing == "disabled":
config_dict["gradient_checkpointing"] = False
elif gradient_checkpointing == "enabled_with_cpu_offloading":
config_dict["gradient_checkpointing"] = True
config_dict["cpu_offload_checkpointing"] = True
else:
config_dict["gradient_checkpointing"] = True
if flux_models["lora_path"]:
config_dict["network_weights"] = flux_models["lora_path"]
config_dict.update(kwargs)
config_dict.update(optimizer_settings)
if loss_args:
config_dict.update(loss_args)
if resume_args:
config_dict.update(resume_args)
for key, value in config_dict.items():
setattr(args, key, value)
#network args
additional_network_args = []
if "T5" in train_text_encoder:
additional_network_args.append("train_t5xxl=True")
if block_args:
additional_network_args.append(block_args["include"])
# Handle network_args in args Namespace
if hasattr(args, 'network_args') and isinstance(args.network_args, list):
args.network_args.extend(additional_network_args)
else:
setattr(args, 'network_args', additional_network_args)
saved_args_file_path = os.path.join(output_dir, f"{output_name}_args.json")
with open(saved_args_file_path, 'w') as f:
json.dump(vars(args), f, indent=4)
#workflow saving
metadata = {}
if extra_pnginfo is not None:
metadata.update(extra_pnginfo["workflow"])
saved_workflow_file_path = os.path.join(output_dir, f"{output_name}_workflow.json")
with open(saved_workflow_file_path, 'w') as f:
json.dump(metadata, f, indent=4)
#pass args to kohya and initialize trainer
with torch.inference_mode(False):
network_trainer = FluxNetworkTrainer()
training_loop = network_trainer.init_train(args)
epochs_count = network_trainer.num_train_epochs
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, epochs_count, args)
class InitFluxTraining:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"flux_models": ("TRAIN_FLUX_MODELS",),
"dataset": ("JSON",),
"optimizer_settings": ("ARGS",),
"output_name": ("STRING", {"default": "flux", "multiline": False}),
"output_dir": ("STRING", {"default": "flux_trainer_output", "multiline": False, "tooltip": "path to dataset, root is the 'ComfyUI' folder, with windows portable 'ComfyUI_windows_portable'"}),
"learning_rate": ("FLOAT", {"default": 4e-6, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "learning rate"}),
"max_train_steps": ("INT", {"default": 1500, "min": 1, "max": 100000, "step": 1, "tooltip": "max number of training steps"}),
"apply_t5_attn_mask": ("BOOLEAN", {"default": True, "tooltip": "apply t5 attention mask"}),
"t5xxl_max_token_length": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 8, "tooltip": "dev and LibreFlux uses 512, schnell 256"}),
"cache_latents": (["disk", "memory", "disabled"], {"tooltip": "caches text encoder outputs"}),
"cache_text_encoder_outputs": (["disk", "memory", "disabled"], {"tooltip": "caches text encoder outputs"}),
"weighting_scheme": (["logit_normal", "sigma_sqrt", "mode", "cosmap", "none"],),
"logit_mean": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "mean to use when using the logit_normal weighting scheme"}),
"logit_std": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01,"tooltip": "std to use when using the logit_normal weighting scheme"}),
"mode_scale": ("FLOAT", {"default": 1.29, "min": 0.0, "max": 10.0, "step": 0.01, "tooltip": "Scale of mode weighting scheme. Only effective when using the mode as the weighting_scheme"}),
"loss_type": (["l1", "l2", "huber", "smooth_l1"], {"default": "l2", "tooltip": "loss type"}),
"timestep_sampling": (["sigmoid", "uniform", "sigma", "shift", "flux_shift"], {"tooltip": "Method to sample timesteps: sigma-based, uniform random, sigmoid of random normal and shift of sigmoid (recommend value of 3.1582 for discrete_flow_shift)"}),
"sigmoid_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.1, "tooltip": "Scale factor for sigmoid timestep sampling (only used when timestep-sampling is sigmoid"}),
"model_prediction_type": (["raw", "additive", "sigma_scaled"], {"tooltip": "How to interpret and process the model prediction: raw (use as is), additive (add to noisy input), sigma_scaled (apply sigma scaling)"}),
"cpu_offload_checkpointing": ("BOOLEAN", {"default": True, "tooltip": "offload the gradient checkpointing to CPU. This reduces VRAM usage for about 2GB"}),
"optimizer_fusing": (['fused_backward_pass', 'blockwise_fused_optimizers'], {"tooltip": "reduces memory use"}),
"blocks_to_swap": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1, "tooltip": "Sets the number of blocks (~640MB) to swap during the forward and backward passes, increasing this number lowers the overall VRAM used during training at the expense of training speed (s/it)."}),
"guidance_scale": ("FLOAT", {"default": 1.0, "min": 1.0, "max": 32.0, "step": 0.01, "tooltip": "guidance scale"}),
"discrete_flow_shift": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.0001, "tooltip": "for the Euler Discrete Scheduler, default is 3.0"}),
"highvram": ("BOOLEAN", {"default": False, "tooltip": "memory mode"}),
"fp8_base": ("BOOLEAN", {"default": False, "tooltip": "use fp8 for base model"}),
"gradient_dtype": (["fp32", "fp16", "bf16"], {"default": "bf16", "tooltip": "to use the full fp16/bf16 training"}),
"save_dtype": (["fp32", "fp16", "bf16", "fp8_e4m3fn"], {"default": "bf16", "tooltip": "the dtype to save checkpoints as"}),
"attention_mode": (["sdpa", "xformers", "disabled"], {"default": "sdpa", "tooltip": "memory efficient attention mode"}),
"sample_prompts": ("STRING", {"multiline": True, "default": "illustration of a kitten | photograph of a turtle", "tooltip": "validation sample prompts, for multiple prompts, separate by `|`"}),
},
"optional": {
"additional_args": ("STRING", {"multiline": True, "default": "", "tooltip": "additional args to pass to the training command"}),
"resume_args": ("ARGS", {"default": "", "tooltip": "resume args to pass to the training command"}),
},
}
RETURN_TYPES = ("NETWORKTRAINER", "INT", "KOHYA_ARGS")
RETURN_NAMES = ("network_trainer", "epochs_count", "args")
FUNCTION = "init_training"
CATEGORY = "FluxTrainer"
def init_training(self, flux_models, optimizer_settings, dataset, sample_prompts, output_name,
attention_mode, gradient_dtype, save_dtype, optimizer_fusing, additional_args=None, resume_args=None, **kwargs,):
mm.soft_empty_cache()
output_dir = os.path.abspath(kwargs.get("output_dir"))
os.makedirs(output_dir, exist_ok=True)
total, used, free = shutil.disk_usage(output_dir)
required_free_space = 25 * (2**30)
if free <= required_free_space:
raise ValueError(f"Most likely insufficient disk space to complete training. Required: {required_free_space/2**30}GB. Available: {free/2**30}GB")
dataset_config = dataset["datasets"]
dataset_toml = toml.dumps(json.loads(dataset_config))
parser = train_setup_parser()
flux_train_utils.add_flux_train_arguments(parser)
if additional_args is not None:
print(f"additional_args: {additional_args}")
args, _ = parser.parse_known_args(args=shlex.split(additional_args))
else:
args, _ = parser.parse_known_args()
if kwargs.get("cache_latents") == "memory":
kwargs["cache_latents"] = True
kwargs["cache_latents_to_disk"] = False
elif kwargs.get("cache_latents") == "disk":
kwargs["cache_latents"] = True
kwargs["cache_latents_to_disk"] = True
kwargs["caption_dropout_rate"] = 0.0
kwargs["shuffle_caption"] = False
kwargs["token_warmup_step"] = 0.0
kwargs["caption_tag_dropout_rate"] = 0.0
else:
kwargs["cache_latents"] = False
kwargs["cache_latents_to_disk"] = False
if kwargs.get("cache_text_encoder_outputs") == "memory":
kwargs["cache_text_encoder_outputs"] = True
kwargs["cache_text_encoder_outputs_to_disk"] = False
elif kwargs.get("cache_text_encoder_outputs") == "disk":
kwargs["cache_text_encoder_outputs"] = True
kwargs["cache_text_encoder_outputs_to_disk"] = True
else:
kwargs["cache_text_encoder_outputs"] = False
kwargs["cache_text_encoder_outputs_to_disk"] = False
if '|' in sample_prompts:
prompts = sample_prompts.split('|')
else:
prompts = [sample_prompts]
config_dict = {
"sample_prompts": prompts,
"save_precision": save_dtype,
"mixed_precision": "bf16",
"num_cpu_threads_per_process": 1,
"pretrained_model_name_or_path": flux_models["transformer"],
"clip_l": flux_models["clip_l"],
"t5xxl": flux_models["t5"],
"ae": flux_models["vae"],
"save_model_as": "safetensors",
"persistent_data_loader_workers": False,
"max_data_loader_n_workers": 0,
"seed": 42,
"gradient_checkpointing": True,
"dataset_config": dataset_toml,
"output_name": f"{output_name}_{save_dtype}",
"mem_eff_save": True,
"disable_mmap_load_safetensors": True,
}
optimizer_fusing_settings = {
"fused_backward_pass": {"fused_backward_pass": True, "blockwise_fused_optimizers": False},
"blockwise_fused_optimizers": {"fused_backward_pass": False, "blockwise_fused_optimizers": True}
}
config_dict.update(optimizer_fusing_settings.get(optimizer_fusing, {}))
attention_settings = {
"sdpa": {"mem_eff_attn": True, "xformers": False, "spda": True},
"xformers": {"mem_eff_attn": True, "xformers": True, "spda": False}
}
config_dict.update(attention_settings.get(attention_mode, {}))
gradient_dtype_settings = {
"fp16": {"full_fp16": True, "full_bf16": False, "mixed_precision": "fp16"},
"bf16": {"full_bf16": True, "full_fp16": False, "mixed_precision": "bf16"}
}
config_dict.update(gradient_dtype_settings.get(gradient_dtype, {}))
config_dict.update(kwargs)
config_dict.update(optimizer_settings)
if resume_args:
config_dict.update(resume_args)
for key, value in config_dict.items():
setattr(args, key, value)
with torch.inference_mode(False):
network_trainer = FluxTrainer()
training_loop = network_trainer.init_train(args)
epochs_count = network_trainer.num_train_epochs
saved_args_file_path = os.path.join(output_dir, f"{output_name}_args.json")
with open(saved_args_file_path, 'w') as f:
json.dump(vars(args), f, indent=4)
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, epochs_count, args)
class InitFluxTrainingFromPreset:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"flux_models": ("TRAIN_FLUX_MODELS",),
"dataset_settings": ("TOML_DATASET",),
"preset_args": ("KOHYA_ARGS",),
"output_name": ("STRING", {"default": "flux", "multiline": False}),
"output_dir": ("STRING", {"default": "flux_trainer_output", "multiline": False, "tooltip": "output directory, root is ComfyUI folder"}),
"sample_prompts": ("STRING", {"multiline": True, "default": "illustration of a kitten | photograph of a turtle", "tooltip": "validation sample prompts, for multiple prompts, separate by `|`"}),
},
}
RETURN_TYPES = ("NETWORKTRAINER", "INT", "STRING", "KOHYA_ARGS")
RETURN_NAMES = ("network_trainer", "epochs_count", "output_path", "args")
FUNCTION = "init_training"
CATEGORY = "FluxTrainer"
def init_training(self, flux_models, dataset_settings, sample_prompts, output_name, preset_args, **kwargs,):
mm.soft_empty_cache()
dataset = dataset_settings["dataset"]
dataset_repeats = dataset_settings["repeats"]
parser = train_setup_parser()
args, _ = parser.parse_known_args()
for key, value in vars(preset_args).items():
setattr(args, key, value)
output_dir = os.path.join(script_directory, "output")
if '|' in sample_prompts:
prompts = sample_prompts.split('|')
else:
prompts = [sample_prompts]
width, height = toml.loads(dataset)["datasets"][0]["resolution"]
config_dict = {
"sample_prompts": prompts,
"dataset_repeats": dataset_repeats,
"num_cpu_threads_per_process": 1,
"pretrained_model_name_or_path": flux_models["transformer"],
"clip_l": flux_models["clip_l"],
"t5xxl": flux_models["t5"],
"ae": flux_models["vae"],
"save_model_as": "safetensors",
"persistent_data_loader_workers": False,
"max_data_loader_n_workers": 0,
"seed": 42,
"gradient_checkpointing": True,
"dataset_config": dataset,
"output_dir": output_dir,
"output_name": f"{output_name}_rank{kwargs.get('network_dim')}_{args.save_precision}",
"width" : int(width),
"height" : int(height),
}
config_dict.update(kwargs)
for key, value in config_dict.items():
setattr(args, key, value)
with torch.inference_mode(False):
network_trainer = FluxNetworkTrainer()
training_loop = network_trainer.init_train(args)
final_output_path = os.path.join(output_dir, output_name)
epochs_count = network_trainer.num_train_epochs
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, epochs_count, final_output_path, args)
class FluxTrainLoop:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"steps": ("INT", {"default": 1, "min": 1, "max": 10000, "step": 1, "tooltip": "the step point in training to validate/save"}),
},
}
RETURN_TYPES = ("NETWORKTRAINER", "INT",)
RETURN_NAMES = ("network_trainer", "steps",)
FUNCTION = "train"
CATEGORY = "FluxTrainer"
def train(self, network_trainer, steps):
with torch.inference_mode(False):
training_loop = network_trainer["training_loop"]
network_trainer = network_trainer["network_trainer"]
initial_global_step = network_trainer.global_step
target_global_step = network_trainer.global_step + steps
comfy_pbar = comfy.utils.ProgressBar(steps)
network_trainer.comfy_pbar = comfy_pbar
network_trainer.optimizer_train_fn()
while network_trainer.global_step < target_global_step:
steps_done = training_loop(
break_at_steps = target_global_step,
epoch = network_trainer.current_epoch.value,
)
#pbar.update(steps_done)
# Also break if the global steps have reached the max train steps
if network_trainer.global_step >= network_trainer.args.max_train_steps:
break
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, network_trainer.global_step)
class FluxTrainAndValidateLoop:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"validate_at_steps": ("INT", {"default": 250, "min": 1, "max": 10000, "step": 1, "tooltip": "the step point in training to validate/save"}),
"save_at_steps": ("INT", {"default": 250, "min": 1, "max": 10000, "step": 1, "tooltip": "the step point in training to validate/save"}),
},
"optional": {
"validation_settings": ("VALSETTINGS",),
}
}
RETURN_TYPES = ("NETWORKTRAINER", "INT",)
RETURN_NAMES = ("network_trainer", "steps",)
FUNCTION = "train"
CATEGORY = "FluxTrainer"
def train(self, network_trainer, validate_at_steps, save_at_steps, validation_settings=None):
with torch.inference_mode(False):
training_loop = network_trainer["training_loop"]
network_trainer = network_trainer["network_trainer"]
target_global_step = network_trainer.args.max_train_steps
comfy_pbar = comfy.utils.ProgressBar(target_global_step)
network_trainer.comfy_pbar = comfy_pbar
network_trainer.optimizer_train_fn()
while network_trainer.global_step < target_global_step:
next_validate_step = ((network_trainer.global_step // validate_at_steps) + 1) * validate_at_steps
next_save_step = ((network_trainer.global_step // save_at_steps) + 1) * save_at_steps
steps_done = training_loop(
break_at_steps=min(next_validate_step, next_save_step),
epoch=network_trainer.current_epoch.value,
)
# Check if we need to validate
if network_trainer.global_step % validate_at_steps == 0:
self.validate(network_trainer, validation_settings)
# Check if we need to save
if network_trainer.global_step % save_at_steps == 0:
self.save(network_trainer)
# Also break if the global steps have reached the max train steps
if network_trainer.global_step >= network_trainer.args.max_train_steps:
break
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, network_trainer.global_step)
def validate(self, network_trainer, validation_settings=None):
params = (
network_trainer.current_epoch.value,
network_trainer.global_step,
validation_settings
)
network_trainer.optimizer_eval_fn()
image_tensors = network_trainer.sample_images(*params)
network_trainer.optimizer_train_fn()
print("Validating at step:", network_trainer.global_step)
def save(self, network_trainer):
ckpt_name = train_util.get_step_ckpt_name(network_trainer.args, "." + network_trainer.args.save_model_as, network_trainer.global_step)
network_trainer.optimizer_eval_fn()
network_trainer.save_model(ckpt_name, network_trainer.accelerator.unwrap_model(network_trainer.network), network_trainer.global_step, network_trainer.current_epoch.value + 1)
network_trainer.optimizer_train_fn()
print("Saving at step:", network_trainer.global_step)
class FluxTrainSave:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"save_state": ("BOOLEAN", {"default": False, "tooltip": "save the whole model state as well"}),
"copy_to_comfy_lora_folder": ("BOOLEAN", {"default": False, "tooltip": "copy the lora model to the comfy lora folder"}),
},
}
RETURN_TYPES = ("NETWORKTRAINER", "STRING", "INT",)
RETURN_NAMES = ("network_trainer","lora_path", "steps",)
FUNCTION = "save"
CATEGORY = "FluxTrainer"
def save(self, network_trainer, save_state, copy_to_comfy_lora_folder):
import shutil
with torch.inference_mode(False):
trainer = network_trainer["network_trainer"]
global_step = trainer.global_step
ckpt_name = train_util.get_step_ckpt_name(trainer.args, "." + trainer.args.save_model_as, global_step)
trainer.save_model(ckpt_name, trainer.accelerator.unwrap_model(trainer.network), global_step, trainer.current_epoch.value + 1)
remove_step_no = train_util.get_remove_step_no(trainer.args, global_step)
if remove_step_no is not None:
remove_ckpt_name = train_util.get_step_ckpt_name(trainer.args, "." + trainer.args.save_model_as, remove_step_no)
trainer.remove_model(remove_ckpt_name)
if save_state:
train_util.save_and_remove_state_stepwise(trainer.args, trainer.accelerator, global_step)
lora_path = os.path.join(trainer.args.output_dir, ckpt_name)
if copy_to_comfy_lora_folder:
destination_dir = os.path.join(folder_paths.models_dir, "loras", "flux_trainer")
os.makedirs(destination_dir, exist_ok=True)
shutil.copy(lora_path, os.path.join(destination_dir, ckpt_name))
return (network_trainer, lora_path, global_step)
class FluxTrainSaveModel:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"copy_to_comfy_model_folder": ("BOOLEAN", {"default": False, "tooltip": "copy the lora model to the comfy lora folder"}),
"end_training": ("BOOLEAN", {"default": False, "tooltip": "end the training"}),
},
}
RETURN_TYPES = ("NETWORKTRAINER", "STRING", "INT",)
RETURN_NAMES = ("network_trainer","model_path", "steps",)
FUNCTION = "save"
CATEGORY = "FluxTrainer"
def save(self, network_trainer, copy_to_comfy_model_folder, end_training):
import shutil
with torch.inference_mode(False):
trainer = network_trainer["network_trainer"]
global_step = trainer.global_step
trainer.optimizer_eval_fn()
ckpt_name = train_util.get_step_ckpt_name(trainer.args, "." + trainer.args.save_model_as, global_step)
flux_train_utils.save_flux_model_on_epoch_end_or_stepwise(
trainer.args,
False,
trainer.accelerator,
trainer.save_dtype,
trainer.current_epoch.value,
trainer.num_train_epochs,
global_step,
trainer.accelerator.unwrap_model(trainer.unet)
)
model_path = os.path.join(trainer.args.output_dir, ckpt_name)
if copy_to_comfy_model_folder:
shutil.copy(model_path, os.path.join(folder_paths.models_dir, "diffusion_models", "flux_trainer", ckpt_name))
model_path = os.path.join(folder_paths.models_dir, "diffusion_models", "flux_trainer", ckpt_name)
if end_training:
trainer.accelerator.end_training()
return (network_trainer, model_path, global_step)
class FluxTrainEnd:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"save_state": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("STRING", "STRING", "STRING",)
RETURN_NAMES = ("lora_name", "metadata", "lora_path",)
FUNCTION = "endtrain"
CATEGORY = "FluxTrainer"
OUTPUT_NODE = True
def endtrain(self, network_trainer, save_state):
with torch.inference_mode(False):
training_loop = network_trainer["training_loop"]
network_trainer = network_trainer["network_trainer"]
network_trainer.metadata["ss_epoch"] = str(network_trainer.num_train_epochs)
network_trainer.metadata["ss_training_finished_at"] = str(time.time())
network = network_trainer.accelerator.unwrap_model(network_trainer.network)
network_trainer.accelerator.end_training()
network_trainer.optimizer_eval_fn()
if save_state:
train_util.save_state_on_train_end(network_trainer.args, network_trainer.accelerator)
ckpt_name = train_util.get_last_ckpt_name(network_trainer.args, "." + network_trainer.args.save_model_as)
network_trainer.save_model(ckpt_name, network, network_trainer.global_step, network_trainer.num_train_epochs, force_sync_upload=True)
logger.info("model saved.")
final_lora_name = str(network_trainer.args.output_name)
final_lora_path = os.path.join(network_trainer.args.output_dir, ckpt_name)
# metadata
metadata = json.dumps(network_trainer.metadata, indent=2)
training_loop = None
network_trainer = None
mm.soft_empty_cache()
return (final_lora_name, metadata, final_lora_path)
class FluxTrainResume:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"load_state_path": ("STRING", {"default": "", "multiline": True, "tooltip": "path to load state from"}),
"skip_until_initial_step" : ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("ARGS", )
RETURN_NAMES = ("resume_args", )
FUNCTION = "resume"
CATEGORY = "FluxTrainer"
def resume(self, load_state_path, skip_until_initial_step):
resume_args ={
"resume": load_state_path,
"skip_until_initial_step": skip_until_initial_step
}
return (resume_args, )
class FluxTrainBlockSelect:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"include": ("STRING", {"default": "lora_unet_single_blocks_20_linear2", "multiline": True, "tooltip": "blocks to include in the LoRA network, to select multiple blocks either input them as "}),
},
}
RETURN_TYPES = ("ARGS", )
RETURN_NAMES = ("block_args", )
FUNCTION = "block_select"
CATEGORY = "FluxTrainer"
def block_select(self, include):
import re
# Split the input string by commas to handle multiple ranges/blocks
elements = include.split(',')
# Initialize a list to collect block names
blocks = []
# Pattern to find ranges like (10-20)
pattern = re.compile(r'\((\d+)-(\d+)\)')
# Extract the prefix and suffix from the first element
prefix_suffix_pattern = re.compile(r'(.*)_blocks_(.*)')
for element in elements:
element = element.strip()
match = prefix_suffix_pattern.match(element)
if match:
prefix = match.group(1) + "_blocks_"
suffix = match.group(2)
matches = pattern.findall(suffix)
if matches:
for start, end in matches:
# Generate block names for the range and add them to the list
blocks.extend([f"{prefix}{i}{suffix.replace(f'({start}-{end})', '', 1)}" for i in range(int(start), int(end) + 1)])
else:
# If no range is found, add the block name directly
blocks.append(element)
else:
blocks.append(element)
# Construct the `include` string
include_string = ','.join(blocks)
block_args = {
"include": f"only_if_contains={include_string}",
}
return (block_args, )
class FluxTrainValidationSettings:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"steps": ("INT", {"default": 20, "min": 1, "max": 256, "step": 1, "tooltip": "sampling steps"}),
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 8, "tooltip": "image width"}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 8, "tooltip": "image height"}),
"guidance_scale": ("FLOAT", {"default": 3.5, "min": 1.0, "max": 32.0, "step": 0.05, "tooltip": "guidance scale"}),
"seed": ("INT", {"default": 42,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
"shift": ("BOOLEAN", {"default": True, "tooltip": "shift the schedule to favor high timesteps for higher signal images"}),
"base_shift": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.01}),
"max_shift": ("FLOAT", {"default": 1.15, "min": 0.0, "max": 10.0, "step": 0.01}),
},
}
RETURN_TYPES = ("VALSETTINGS", )
RETURN_NAMES = ("validation_settings", )
FUNCTION = "set"
CATEGORY = "FluxTrainer"
def set(self, **kwargs):
validation_settings = kwargs
print(validation_settings)
return (validation_settings,)
class FluxTrainValidate:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"network_trainer": ("NETWORKTRAINER",),
},
"optional": {
"validation_settings": ("VALSETTINGS",),
}
}
RETURN_TYPES = ("NETWORKTRAINER", "IMAGE",)
RETURN_NAMES = ("network_trainer", "validation_images",)
FUNCTION = "validate"
CATEGORY = "FluxTrainer"
def validate(self, network_trainer, validation_settings=None):
training_loop = network_trainer["training_loop"]
network_trainer = network_trainer["network_trainer"]
params = (
network_trainer.current_epoch.value,
network_trainer.global_step,
validation_settings
)
network_trainer.optimizer_eval_fn()
with torch.inference_mode(False):
image_tensors = network_trainer.sample_images(*params)
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, (0.5 * (image_tensors + 1.0)).cpu().float(),)
class VisualizeLoss:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"plot_style": (plt.style.available,{"default": 'default', "tooltip": "matplotlib plot style"}),
"window_size": ("INT", {"default": 100, "min": 0, "max": 10000, "step": 1, "tooltip": "the window size of the moving average"}),
"normalize_y": ("BOOLEAN", {"default": True, "tooltip": "normalize the y-axis to 0"}),
"width": ("INT", {"default": 768, "min": 256, "max": 4096, "step": 2, "tooltip": "width of the plot in pixels"}),
"height": ("INT", {"default": 512, "min": 256, "max": 4096, "step": 2, "tooltip": "height of the plot in pixels"}),
"log_scale": ("BOOLEAN", {"default": False, "tooltip": "use log scale on the y-axis"}),
},
}
RETURN_TYPES = ("IMAGE", "FLOAT",)
RETURN_NAMES = ("plot", "loss_list",)
FUNCTION = "draw"
CATEGORY = "FluxTrainer"
def draw(self, network_trainer, window_size, plot_style, normalize_y, width, height, log_scale):
import numpy as np
loss_values = network_trainer["network_trainer"].loss_recorder.global_loss_list
# Apply moving average
def moving_average(values, window_size):
return np.convolve(values, np.ones(window_size) / window_size, mode='valid')
if window_size > 0:
loss_values = moving_average(loss_values, window_size)
plt.style.use(plot_style)
# Convert pixels to inches (assuming 100 pixels per inch)
width_inches = width / 100
height_inches = height / 100
# Create a plot
fig, ax = plt.subplots(figsize=(width_inches, height_inches))
ax.plot(loss_values, label='Training Loss')
ax.set_xlabel('Step')
ax.set_ylabel('Loss')
if normalize_y:
plt.ylim(bottom=0)
if log_scale:
ax.set_yscale('log')
ax.set_title('Training Loss Over Time')
ax.legend()
ax.grid(True)
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close(fig)
buf.seek(0)
image = Image.open(buf).convert('RGB')
image_tensor = transforms.ToTensor()(image)
image_tensor = image_tensor.unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
return image_tensor, loss_values,
class FluxKohyaInferenceSampler:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"flux_models": ("TRAIN_FLUX_MODELS",),
"lora_name": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}),
"lora_method": (["apply", "merge"], {"tooltip": "whether to apply or merge the lora weights"}),
"steps": ("INT", {"default": 20, "min": 1, "max": 256, "step": 1, "tooltip": "sampling steps"}),
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 8, "tooltip": "image width"}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 8, "tooltip": "image height"}),
"guidance_scale": ("FLOAT", {"default": 3.5, "min": 1.0, "max": 32.0, "step": 0.05, "tooltip": "guidance scale"}),
"seed": ("INT", {"default": 42,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
"use_fp8": ("BOOLEAN", {"default": True, "tooltip": "use fp8 weights"}),
"apply_t5_attn_mask": ("BOOLEAN", {"default": True, "tooltip": "use t5 attention mask"}),
"prompt": ("STRING", {"multiline": True, "default": "illustration of a kitten", "tooltip": "prompt"}),
},
}
RETURN_TYPES = ("IMAGE", )
RETURN_NAMES = ("image", )
FUNCTION = "sample"
CATEGORY = "FluxTrainer"
def sample(self, flux_models, lora_name, steps, width, height, guidance_scale, seed, prompt, use_fp8, lora_method, apply_t5_attn_mask):
from .library import flux_utils as flux_utils
from .library import strategy_flux as strategy_flux
from .networks import lora_flux as lora_flux
from typing import List, Optional, Callable
from tqdm import tqdm
import einops
import math
import accelerate
import gc
device = "cuda"
if use_fp8:
accelerator = accelerate.Accelerator(mixed_precision="bf16")
dtype = torch.float8_e4m3fn
else:
dtype = torch.float16
accelerator = None
loading_device = "cpu"
ae_dtype = torch.bfloat16
pretrained_model_name_or_path = flux_models["transformer"]
clip_l = flux_models["clip_l"]
t5xxl = flux_models["t5"]
ae = flux_models["vae"]
lora_path = folder_paths.get_full_path("loras", lora_name)
# load clip_l
logger.info(f"Loading clip_l from {clip_l}...")
clip_l = flux_utils.load_clip_l(clip_l, None, loading_device)
clip_l.eval()
logger.info(f"Loading t5xxl from {t5xxl}...")
t5xxl = flux_utils.load_t5xxl(t5xxl, None, loading_device)
t5xxl.eval()
if use_fp8:
clip_l = accelerator.prepare(clip_l)
t5xxl = accelerator.prepare(t5xxl)
t5xxl_max_length = 512
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(t5xxl_max_length)
encoding_strategy = strategy_flux.FluxTextEncodingStrategy()
# DiT
model = flux_utils.load_flow_model("dev", pretrained_model_name_or_path, dtype, loading_device)
model.eval()
logger.info(f"Casting model to {dtype}")
model.to(dtype) # make sure model is dtype
if use_fp8:
model = accelerator.prepare(model)
# AE
ae = flux_utils.load_ae("dev", ae, ae_dtype, loading_device)
ae.eval()
# LoRA
lora_models: List[lora_flux.LoRANetwork] = []
multiplier = 1.0
lora_model, weights_sd = lora_flux.create_network_from_weights(
multiplier, lora_path, ae, [clip_l, t5xxl], model, None, True
)
if lora_method == "merge":
lora_model.merge_to([clip_l, t5xxl], model, weights_sd)
elif lora_method == "apply":
lora_model.apply_to([clip_l, t5xxl], model)
info = lora_model.load_state_dict(weights_sd, strict=True)
logger.info(f"Loaded LoRA weights from {lora_name}: {info}")
lora_model.eval()
lora_model.to(device)
lora_models.append(lora_model)
packed_latent_height, packed_latent_width = math.ceil(height / 16), math.ceil(width / 16)
noise = torch.randn(
1,
packed_latent_height * packed_latent_width,
16 * 2 * 2,
device=device,
dtype=ae_dtype,
generator=torch.Generator(device=device).manual_seed(seed),
)
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width)
# prepare embeddings
logger.info("Encoding prompts...")
tokens_and_masks = tokenize_strategy.tokenize(prompt)
clip_l = clip_l.to(device)
t5xxl = t5xxl.to(device)
with torch.no_grad():
if use_fp8:
clip_l.to(ae_dtype)
t5xxl.to(ae_dtype)
with accelerator.autocast():
l_pooled, t5_out, txt_ids, t5_attn_mask = encoding_strategy.encode_tokens(
tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, apply_t5_attn_mask
)
else:
with torch.autocast(device_type=device.type, dtype=dtype):
l_pooled, _, _, _ = encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, None], tokens_and_masks)
with torch.autocast(device_type=device.type, dtype=dtype):
_, t5_out, txt_ids, t5_attn_mask = encoding_strategy.encode_tokens(
tokenize_strategy, [None, t5xxl], tokens_and_masks, apply_t5_attn_mask
)
# NaN check
if torch.isnan(l_pooled).any():
raise ValueError("NaN in l_pooled")
if torch.isnan(t5_out).any():
raise ValueError("NaN in t5_out")
clip_l = clip_l.cpu()
t5xxl = t5xxl.cpu()
gc.collect()
torch.cuda.empty_cache()
# generate image
logger.info("Generating image...")
model = model.to(device)
print("MODEL DTYPE: ", model.dtype)
img_ids = img_ids.to(device)
t5_attn_mask = t5_attn_mask.to(device) if apply_t5_attn_mask else None
def time_shift(mu: float, sigma: float, t: torch.Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# eastimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def denoise(
model,
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
timesteps: list[float],
guidance: float = 4.0,
t5_attn_mask: Optional[torch.Tensor] = None,
):
# this is ignored for schnell
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
comfy_pbar = comfy.utils.ProgressBar(total=len(timesteps))
for t_curr, t_prev in zip(tqdm(timesteps[:-1]), timesteps[1:]):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
img = img + (t_prev - t_curr) * pred
comfy_pbar.update(1)
return img
def do_sample(
accelerator: Optional[accelerate.Accelerator],
model,
img: torch.Tensor,
img_ids: torch.Tensor,
l_pooled: torch.Tensor,
t5_out: torch.Tensor,
txt_ids: torch.Tensor,
num_steps: int,
guidance: float,
t5_attn_mask: Optional[torch.Tensor],
is_schnell: bool,
device: torch.device,
flux_dtype: torch.dtype,
):
timesteps = get_schedule(num_steps, img.shape[1], shift=not is_schnell)
print(timesteps)
# denoise initial noise
if accelerator:
with accelerator.autocast(), torch.no_grad():
x = denoise(
model, img, img_ids, t5_out, txt_ids, l_pooled, timesteps=timesteps, guidance=guidance, t5_attn_mask=t5_attn_mask
)
else:
with torch.autocast(device_type=device.type, dtype=flux_dtype):
l_pooled, _, _, _ = encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, None], tokens_and_masks)
with torch.autocast(device_type=device.type, dtype=flux_dtype):
_, t5_out, txt_ids, t5_attn_mask = encoding_strategy.encode_tokens(
tokenize_strategy, [None, t5xxl], tokens_and_masks, apply_t5_attn_mask
)
return x
x = do_sample(accelerator, model, noise, img_ids, l_pooled, t5_out, txt_ids, steps, guidance_scale, t5_attn_mask, False, device, dtype)
model = model.cpu()
gc.collect()
torch.cuda.empty_cache()
# unpack
x = x.float()
x = einops.rearrange(x, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=packed_latent_height, w=packed_latent_width, ph=2, pw=2)
# decode
logger.info("Decoding image...")
ae = ae.to(device)
with torch.no_grad():
if use_fp8:
with accelerator.autocast():
x = ae.decode(x)
else:
with torch.autocast(device_type=device.type, dtype=ae_dtype):
x = ae.decode(x)
ae = ae.cpu()
x = x.clamp(-1, 1)
x = x.permute(0, 2, 3, 1)
return ((0.5 * (x + 1.0)).cpu().float(),)
class UploadToHuggingFace:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"network_trainer": ("NETWORKTRAINER",),
"source_path": ("STRING", {"default": ""}),
"repo_id": ("STRING",{"default": ""}),
"revision": ("STRING", {"default": ""}),
"private": ("BOOLEAN", {"default": True, "tooltip": "If creating a new repo, leave it private"}),
},
"optional": {
"token": ("STRING", {"default": "","tooltip":"DO NOT LEAVE IN THE NODE or it might save in metadata, can also use the hf_token.json"}),
}
}
RETURN_TYPES = ("NETWORKTRAINER", "STRING",)
RETURN_NAMES = ("network_trainer","status",)
FUNCTION = "upload"
CATEGORY = "FluxTrainer"
def upload(self, source_path, network_trainer, repo_id, private, revision, token=""):
with torch.inference_mode(False):
from huggingface_hub import HfApi
if not token:
with open(os.path.join(script_directory, "hf_token.json"), "r") as file:
token_data = json.load(file)
token = token_data["hf_token"]
print(token)
# Save metadata to a JSON file
directory_path = os.path.dirname(os.path.dirname(source_path))
file_name = os.path.basename(source_path)
metadata = network_trainer["network_trainer"].metadata
metadata_file_path = os.path.join(directory_path, "metadata.json")
with open(metadata_file_path, 'w') as f:
json.dump(metadata, f, indent=4)
repo_type = None
api = HfApi(token=token)
try:
api.repo_info(
repo_id=repo_id,
revision=revision if revision != "" else None,
repo_type=repo_type)
repo_exists = True
logger.info(f"Repository {repo_id} exists.")
except Exception as e: # Catching a more specific exception would be better if you know what to expect
repo_exists = False
logger.error(f"Repository {repo_id} does not exist. Exception: {e}")
if not repo_exists:
try:
api.create_repo(repo_id=repo_id, repo_type=repo_type, private=private)
except Exception as e: # Checked for RepositoryNotFoundError, but other exceptions could be problematic
logger.error("===========================================")
logger.error(f"failed to create HuggingFace repo: {e}")
logger.error("===========================================")
is_folder = (type(source_path) == str and os.path.isdir(source_path)) or (isinstance(source_path, Path) and source_path.is_dir())
print(source_path, is_folder)
try:
if is_folder:
api.upload_folder(
repo_id=repo_id,
repo_type=repo_type,
folder_path=source_path,
path_in_repo=file_name,
)
else:
api.upload_file(
repo_id=repo_id,
repo_type=repo_type,
path_or_fileobj=source_path,
path_in_repo=file_name,
)
# Upload the metadata file separately if it's not a folder upload
if not is_folder:
api.upload_file(
repo_id=repo_id,
repo_type=repo_type,
path_or_fileobj=str(metadata_file_path),
path_in_repo='metadata.json',
)
status = "Uploaded to HuggingFace succesfully"
except Exception as e: # RuntimeErrorを確認済みだが他にあると困るので
logger.error("===========================================")
logger.error(f"failed to upload to HuggingFace / HuggingFaceへのアップロードに失敗しました : {e}")
logger.error("===========================================")
status = f"Failed to upload to HuggingFace {e}"
return (network_trainer, status,)
class ExtractFluxLoRA:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"original_model": (folder_paths.get_filename_list("unet"), ),
"finetuned_model": (folder_paths.get_filename_list("unet"), ),
"output_path": ("STRING", {"default": f"{str(os.path.join(folder_paths.models_dir, 'loras', 'Flux'))}"}),
"dim": ("INT", {"default": 4, "min": 2, "max": 1024, "step": 2, "tooltip": "LoRA rank"}),
"save_dtype": (["fp32", "fp16", "bf16", "fp8_e4m3fn", "fp8_e5m2"], {"default": "bf16", "tooltip": "the dtype to save the LoRA as"}),
"load_device": (["cpu", "cuda"], {"default": "cuda", "tooltip": "the device to load the model to"}),
"store_device": (["cpu", "cuda"], {"default": "cpu", "tooltip": "the device to store the LoRA as"}),
"clamp_quantile": ("FLOAT", {"default": 0.99, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "clamp quantile"}),
"metadata": ("BOOLEAN", {"default": True, "tooltip": "build metadata"}),
"mem_eff_safe_open": ("BOOLEAN", {"default": False, "tooltip": "memory efficient loading"}),
},
}
RETURN_TYPES = ("STRING", )
RETURN_NAMES = ("output_path",)
FUNCTION = "extract"
CATEGORY = "FluxTrainer"
def extract(self, original_model, finetuned_model, output_path, dim, save_dtype, load_device, store_device, clamp_quantile, metadata, mem_eff_safe_open):
from .flux_extract_lora import svd
transformer_path = folder_paths.get_full_path("unet", original_model)
finetuned_model_path = folder_paths.get_full_path("unet", finetuned_model)
outpath = svd(
model_org = transformer_path,
model_tuned = finetuned_model_path,
save_to = os.path.join(output_path, f"{finetuned_model.replace('.safetensors', '')}_extracted_lora_rank_{dim}-{save_dtype}.safetensors"),
dim = dim,
device = load_device,
store_device = store_device,
save_precision = save_dtype,
clamp_quantile = clamp_quantile,
no_metadata = not metadata,
mem_eff_safe_open = mem_eff_safe_open
)
return (outpath,)
NODE_CLASS_MAPPINGS = {
"InitFluxLoRATraining": InitFluxLoRATraining,
"InitFluxTraining": InitFluxTraining,
"FluxTrainModelSelect": FluxTrainModelSelect,
"TrainDatasetGeneralConfig": TrainDatasetGeneralConfig,
"TrainDatasetAdd": TrainDatasetAdd,
"FluxTrainLoop": FluxTrainLoop,
"VisualizeLoss": VisualizeLoss,
"FluxTrainValidate": FluxTrainValidate,
"FluxTrainValidationSettings": FluxTrainValidationSettings,
"FluxTrainEnd": FluxTrainEnd,
"FluxTrainSave": FluxTrainSave,
"FluxKohyaInferenceSampler": FluxKohyaInferenceSampler,
"UploadToHuggingFace": UploadToHuggingFace,
"OptimizerConfig": OptimizerConfig,
"OptimizerConfigAdafactor": OptimizerConfigAdafactor,
"FluxTrainSaveModel": FluxTrainSaveModel,
"ExtractFluxLoRA": ExtractFluxLoRA,
"OptimizerConfigProdigy": OptimizerConfigProdigy,
"FluxTrainResume": FluxTrainResume,
"FluxTrainBlockSelect": FluxTrainBlockSelect,
"TrainDatasetRegularization": TrainDatasetRegularization,
"FluxTrainAndValidateLoop": FluxTrainAndValidateLoop,
"OptimizerConfigProdigyPlusScheduleFree": OptimizerConfigProdigyPlusScheduleFree,
"FluxTrainerLossConfig": FluxTrainerLossConfig,
"TrainNetworkConfig": TrainNetworkConfig,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"InitFluxLoRATraining": "Init Flux LoRA Training",
"InitFluxTraining": "Init Flux Training",
"FluxTrainModelSelect": "FluxTrain ModelSelect",
"TrainDatasetGeneralConfig": "TrainDatasetGeneralConfig",
"TrainDatasetAdd": "TrainDatasetAdd",
"FluxTrainLoop": "Flux Train Loop",
"VisualizeLoss": "Visualize Loss",
"FluxTrainValidate": "Flux Train Validate",
"FluxTrainValidationSettings": "Flux Train Validation Settings",
"FluxTrainEnd": "Flux LoRA Train End",
"FluxTrainSave": "Flux Train Save LoRA",
"FluxKohyaInferenceSampler": "Flux Kohya Inference Sampler",
"UploadToHuggingFace": "Upload To HuggingFace",
"OptimizerConfig": "Optimizer Config",
"OptimizerConfigAdafactor": "Optimizer Config Adafactor",
"FluxTrainSaveModel": "Flux Train Save Model",
"ExtractFluxLoRA": "Extract Flux LoRA",
"OptimizerConfigProdigy": "Optimizer Config Prodigy",
"FluxTrainResume": "Flux Train Resume",
"FluxTrainBlockSelect": "Flux Train Block Select",
"TrainDatasetRegularization": "Train Dataset Regularization",
"FluxTrainAndValidateLoop": "Flux Train And Validate Loop",
"OptimizerConfigProdigyPlusScheduleFree": "Optimizer Config ProdigyPlusScheduleFree",
"FluxTrainerLossConfig": "Flux Trainer Loss Config",
"TrainNetworkConfig": "Train Network Config",
}