Repo-JEPA: Semantic Code Navigator (SOTA 0.90 MRR)
A Joint Embedding Predictive Architecture (JEPA) for semantic code search, trained on 411,000 real Python functions using an NVIDIA H100.
π Performance
Tested on 1,000 unseen real-world Python functions from CodeSearchNet.
| Metric | Result | Target |
|---|---|---|
| MRR | 0.9052 | 0.60 |
| Hits@1 | 86.2% | - |
| Hits@5 | 95.9% | - |
| Hits@10 | 97.3% | - |
| Median Rank | 1.0 | - |
π§© Usage (AutoModel)
from transformers import AutoModel, AutoTokenizer
# 1. Load Model
model = AutoModel.from_pretrained("uddeshya-k/RepoJepa", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
# 2. Encode Code
code = "def handle_login(user): return auth.verify(user)"
code_embed = model.encode_code(**tokenizer(code, return_tensors="pt"))
# 3. Encode Query
query = "how to authenticate users?"
query_embed = model.encode_query(**tokenizer(query, return_tensors="pt"))
# 4. Search
similarity = (code_embed @ query_embed.T).item()
print(f"Similarity: {similarity:.4f}")
ποΈ Technical Details
- Backbone: CodeBERT (RoBERTa-style)
- Loss: VICReg (Variance-Invariance-Covariance Regularization)
- Hardware: NVIDIA H100 PCIe (80GB VRAM)
- Optimizer: AdamW + OneCycleLR
- Downloads last month
- 17
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support