Upload 8 files
#1
by
AGofficial
- opened
- .gitattributes +1 -0
- README.md +15 -8
- ShaNet.png +3 -0
- chat.py +101 -0
- collect.py +40 -0
- configurator.py +47 -0
- model.py +330 -0
- test.py +7 -0
- train.py +358 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
ShaNet.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,8 +1,15 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
-
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
<img src="ShaNet.png" alt="ShaNet Banner" width="100%">
|
| 3 |
+
|
| 4 |
+
# ShaNet
|
| 5 |
+
|
| 6 |
+
ShaNet is a generative pre-trained transformer trained on conversational data, it is designed to understand and generate human-like text based on the input it receives. This model can be used for various applications such as chatbots, content generation, and more.
|
| 7 |
+
|
| 8 |
+
## Features
|
| 9 |
+
- **Conversational Understanding**: Trained on a diverse dataset to understand context and nuances in conversations.
|
| 10 |
+
- **Text Generation**: Capable of generating coherent and contextually relevant text.
|
| 11 |
+
- **Customizable**: Can be fine-tuned for specific applications or domains.
|
| 12 |
+
- **Open Source**: Available for use and modification.
|
| 13 |
+
|
| 14 |
+
## Installation
|
| 15 |
+
To install ShaNet, you can downlaod all files and run chat.py script.
|
ShaNet.png
ADDED
|
Git LFS Details
|
chat.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import pickle
|
| 5 |
+
from model import GPTConfig, GPT
|
| 6 |
+
import tiktoken
|
| 7 |
+
from rich.traceback import install
|
| 8 |
+
|
| 9 |
+
install()
|
| 10 |
+
|
| 11 |
+
# ----- CONFIG -----
|
| 12 |
+
ckpt_path = 'out/ckpt.pt'
|
| 13 |
+
meta_path = 'data/mydata/meta.pkl'
|
| 14 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 15 |
+
tokenizer_name = 'cl100k_base'
|
| 16 |
+
max_new_tokens = 1024
|
| 17 |
+
temperature = 0.8
|
| 18 |
+
top_k = 100
|
| 19 |
+
special_tokens = {"<|endoftext|>", "<|im_start|>", "<|im_stop|>"}
|
| 20 |
+
|
| 21 |
+
# ----- LOAD TOKENIZER -----
|
| 22 |
+
enc = tiktoken.get_encoding(tokenizer_name)
|
| 23 |
+
encode = enc.encode
|
| 24 |
+
decode = enc.decode
|
| 25 |
+
|
| 26 |
+
# ----- LOAD METADATA -----
|
| 27 |
+
with open(meta_path, 'rb') as f:
|
| 28 |
+
meta = pickle.load(f)
|
| 29 |
+
vocab_size = meta['vocab_size']
|
| 30 |
+
|
| 31 |
+
# ----- LOAD CHECKPOINT -----
|
| 32 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
| 33 |
+
model_args = checkpoint['model_args']
|
| 34 |
+
model_args['vocab_size'] = vocab_size
|
| 35 |
+
block_size = model_args.get('block_size', 1024)
|
| 36 |
+
|
| 37 |
+
# ----- INITIALIZE MODEL -----
|
| 38 |
+
model = GPT(GPTConfig(**model_args))
|
| 39 |
+
model.load_state_dict(checkpoint['model'])
|
| 40 |
+
model.to(device)
|
| 41 |
+
model.eval()
|
| 42 |
+
|
| 43 |
+
@torch.no_grad()
|
| 44 |
+
def generate_stream(model, input_ids, max_new_tokens, temperature=1.0, top_k=None):
|
| 45 |
+
model.eval()
|
| 46 |
+
special_token_id = encode("<|endoftext|>", allowed_special=special_tokens)[0]
|
| 47 |
+
|
| 48 |
+
for _ in range(max_new_tokens):
|
| 49 |
+
if input_ids.size(1) > block_size:
|
| 50 |
+
input_ids = input_ids[:, -block_size:]
|
| 51 |
+
|
| 52 |
+
logits, _ = model(input_ids)
|
| 53 |
+
logits = logits[:, -1, :] / temperature
|
| 54 |
+
|
| 55 |
+
if top_k is not None:
|
| 56 |
+
v, _ = torch.topk(logits, top_k)
|
| 57 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
| 58 |
+
|
| 59 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 60 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 61 |
+
next_token_id = next_token.item()
|
| 62 |
+
|
| 63 |
+
input_ids = torch.cat((input_ids, next_token), dim=1)
|
| 64 |
+
|
| 65 |
+
decoded_token = decode([next_token_id])
|
| 66 |
+
print(decoded_token, end='', flush=True) if decoded_token not in special_tokens else None
|
| 67 |
+
|
| 68 |
+
if next_token_id == special_token_id:
|
| 69 |
+
break
|
| 70 |
+
|
| 71 |
+
print() # Ensure newline after generation
|
| 72 |
+
return input_ids
|
| 73 |
+
|
| 74 |
+
def main():
|
| 75 |
+
print("🤖 AI Assistant is ready. Type 'exit' or press Ctrl+C to quit.\n")
|
| 76 |
+
try:
|
| 77 |
+
while True:
|
| 78 |
+
user_input = input("You: ")
|
| 79 |
+
if user_input.lower() in {"exit", "quit"}:
|
| 80 |
+
print("👋 Exiting assistant.")
|
| 81 |
+
break
|
| 82 |
+
|
| 83 |
+
prompt = f"""
|
| 84 |
+
<|im_start|>user
|
| 85 |
+
{user_input}<|endoftext|>
|
| 86 |
+
<|im_stop|>
|
| 87 |
+
|
| 88 |
+
<|im_start|>assistant
|
| 89 |
+
|
| 90 |
+
"""
|
| 91 |
+
input_ids = torch.tensor(encode(prompt, allowed_special=special_tokens), dtype=torch.long, device=device)[None, ...]
|
| 92 |
+
|
| 93 |
+
print("🤖 Assistant:", end=' ', flush=True)
|
| 94 |
+
generate_stream(model, input_ids, max_new_tokens, temperature, top_k)
|
| 95 |
+
print("-" * 50)
|
| 96 |
+
|
| 97 |
+
except KeyboardInterrupt:
|
| 98 |
+
print("\n👋 Exiting assistant.")
|
| 99 |
+
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
main()
|
collect.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Download, transform LMSYS-Chat-1M into plain text for LLM completion models
|
| 4 |
+
in the format:
|
| 5 |
+
<|im_start|>role
|
| 6 |
+
message<|endoftext|>
|
| 7 |
+
<|im_stop|>
|
| 8 |
+
|
| 9 |
+
with 6 newlines between conversations.
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
from datasets import load_dataset
|
| 13 |
+
import sys
|
| 14 |
+
|
| 15 |
+
def main(output_path="lmsys_chat_1m.txt", split="train"):
|
| 16 |
+
ds = load_dataset("lmsys/lmsys-chat-1m", split=split)
|
| 17 |
+
|
| 18 |
+
with open(output_path, "w", encoding="utf-8") as out:
|
| 19 |
+
for i, sample in enumerate(ds):
|
| 20 |
+
conv = sample["conversation"] # list of messages
|
| 21 |
+
|
| 22 |
+
for msg in conv:
|
| 23 |
+
role = msg["role"]
|
| 24 |
+
content = msg["content"].strip()
|
| 25 |
+
out.write(f"<|im_start|>{role}\n{content}<|endoftext|>\n<|im_stop|>\n")
|
| 26 |
+
|
| 27 |
+
out.write("\n" * 6) # 6 newlines between conversations
|
| 28 |
+
|
| 29 |
+
if (i + 1) % 10000 == 0:
|
| 30 |
+
print(f"Processed {i + 1} conversations", file=sys.stderr)
|
| 31 |
+
|
| 32 |
+
print(f"✔ Saved plain-text to: {output_path}")
|
| 33 |
+
|
| 34 |
+
if __name__ == "__main__":
|
| 35 |
+
import argparse
|
| 36 |
+
p = argparse.ArgumentParser(description="Convert LMSYS-Chat-1M to LLM-friendly text format")
|
| 37 |
+
p.add_argument("--output", "-o", default="lmsys_chat_1m.txt", help="Output file path")
|
| 38 |
+
p.add_argument("--split", "-s", default="train", help="Dataset split (e.g. 'train')")
|
| 39 |
+
args = p.parse_args()
|
| 40 |
+
main(output_path=args.output, split=args.split)
|
configurator.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Poor Man's Configurator. Probably a terrible idea. Example usage:
|
| 3 |
+
$ python train.py config/override_file.py --batch_size=32
|
| 4 |
+
this will first run config/override_file.py, then override batch_size to 32
|
| 5 |
+
|
| 6 |
+
The code in this file will be run as follows from e.g. train.py:
|
| 7 |
+
>>> exec(open('configurator.py').read())
|
| 8 |
+
|
| 9 |
+
So it's not a Python module, it's just shuttling this code away from train.py
|
| 10 |
+
The code in this script then overrides the globals()
|
| 11 |
+
|
| 12 |
+
I know people are not going to love this, I just really dislike configuration
|
| 13 |
+
complexity and having to prepend config. to every single variable. If someone
|
| 14 |
+
comes up with a better simple Python solution I am all ears.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
import sys
|
| 18 |
+
from ast import literal_eval
|
| 19 |
+
|
| 20 |
+
for arg in sys.argv[1:]:
|
| 21 |
+
if '=' not in arg:
|
| 22 |
+
# assume it's the name of a config file
|
| 23 |
+
assert not arg.startswith('--')
|
| 24 |
+
config_file = arg
|
| 25 |
+
print(f"Overriding config with {config_file}:")
|
| 26 |
+
with open(config_file) as f:
|
| 27 |
+
print(f.read())
|
| 28 |
+
exec(open(config_file).read())
|
| 29 |
+
else:
|
| 30 |
+
# assume it's a --key=value argument
|
| 31 |
+
assert arg.startswith('--')
|
| 32 |
+
key, val = arg.split('=')
|
| 33 |
+
key = key[2:]
|
| 34 |
+
if key in globals():
|
| 35 |
+
try:
|
| 36 |
+
# attempt to eval it it (e.g. if bool, number, or etc)
|
| 37 |
+
attempt = literal_eval(val)
|
| 38 |
+
except (SyntaxError, ValueError):
|
| 39 |
+
# if that goes wrong, just use the string
|
| 40 |
+
attempt = val
|
| 41 |
+
# ensure the types match ok
|
| 42 |
+
assert type(attempt) == type(globals()[key])
|
| 43 |
+
# cross fingers
|
| 44 |
+
print(f"Overriding: {key} = {attempt}")
|
| 45 |
+
globals()[key] = attempt
|
| 46 |
+
else:
|
| 47 |
+
raise ValueError(f"Unknown config key: {key}")
|
model.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Full definition of a GPT Language Model, all of it in this single file.
|
| 3 |
+
References:
|
| 4 |
+
1) the official GPT-2 TensorFlow implementation released by OpenAI:
|
| 5 |
+
https://github.com/openai/gpt-2/blob/master/src/model.py
|
| 6 |
+
2) huggingface/transformers PyTorch implementation:
|
| 7 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import math
|
| 11 |
+
import inspect
|
| 12 |
+
from dataclasses import dataclass
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
from torch.nn import functional as F
|
| 17 |
+
|
| 18 |
+
class LayerNorm(nn.Module):
|
| 19 |
+
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
|
| 20 |
+
|
| 21 |
+
def __init__(self, ndim, bias):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.weight = nn.Parameter(torch.ones(ndim))
|
| 24 |
+
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
| 25 |
+
|
| 26 |
+
def forward(self, input):
|
| 27 |
+
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
|
| 28 |
+
|
| 29 |
+
class CausalSelfAttention(nn.Module):
|
| 30 |
+
|
| 31 |
+
def __init__(self, config):
|
| 32 |
+
super().__init__()
|
| 33 |
+
assert config.n_embd % config.n_head == 0
|
| 34 |
+
# key, query, value projections for all heads, but in a batch
|
| 35 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
| 36 |
+
# output projection
|
| 37 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
| 38 |
+
# regularization
|
| 39 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
| 40 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
| 41 |
+
self.n_head = config.n_head
|
| 42 |
+
self.n_embd = config.n_embd
|
| 43 |
+
self.dropout = config.dropout
|
| 44 |
+
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
|
| 45 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
| 46 |
+
if not self.flash:
|
| 47 |
+
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
| 48 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
| 49 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
| 50 |
+
.view(1, 1, config.block_size, config.block_size))
|
| 51 |
+
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
| 54 |
+
|
| 55 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
| 56 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
| 57 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 58 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 59 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 60 |
+
|
| 61 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
| 62 |
+
if self.flash:
|
| 63 |
+
# efficient attention using Flash Attention CUDA kernels
|
| 64 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
|
| 65 |
+
else:
|
| 66 |
+
# manual implementation of attention
|
| 67 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
| 68 |
+
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
|
| 69 |
+
att = F.softmax(att, dim=-1)
|
| 70 |
+
att = self.attn_dropout(att)
|
| 71 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
| 72 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
| 73 |
+
|
| 74 |
+
# output projection
|
| 75 |
+
y = self.resid_dropout(self.c_proj(y))
|
| 76 |
+
return y
|
| 77 |
+
|
| 78 |
+
class MLP(nn.Module):
|
| 79 |
+
|
| 80 |
+
def __init__(self, config):
|
| 81 |
+
super().__init__()
|
| 82 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
| 83 |
+
self.gelu = nn.GELU()
|
| 84 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
| 85 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 86 |
+
|
| 87 |
+
def forward(self, x):
|
| 88 |
+
x = self.c_fc(x)
|
| 89 |
+
x = self.gelu(x)
|
| 90 |
+
x = self.c_proj(x)
|
| 91 |
+
x = self.dropout(x)
|
| 92 |
+
return x
|
| 93 |
+
|
| 94 |
+
class Block(nn.Module):
|
| 95 |
+
|
| 96 |
+
def __init__(self, config):
|
| 97 |
+
super().__init__()
|
| 98 |
+
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
|
| 99 |
+
self.attn = CausalSelfAttention(config)
|
| 100 |
+
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
|
| 101 |
+
self.mlp = MLP(config)
|
| 102 |
+
|
| 103 |
+
def forward(self, x):
|
| 104 |
+
x = x + self.attn(self.ln_1(x))
|
| 105 |
+
x = x + self.mlp(self.ln_2(x))
|
| 106 |
+
return x
|
| 107 |
+
|
| 108 |
+
@dataclass
|
| 109 |
+
class GPTConfig:
|
| 110 |
+
block_size: int = 1024
|
| 111 |
+
vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
|
| 112 |
+
n_layer: int = 12
|
| 113 |
+
n_head: int = 12
|
| 114 |
+
n_embd: int = 768
|
| 115 |
+
dropout: float = 0.0
|
| 116 |
+
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
|
| 117 |
+
|
| 118 |
+
class GPT(nn.Module):
|
| 119 |
+
|
| 120 |
+
def __init__(self, config):
|
| 121 |
+
super().__init__()
|
| 122 |
+
assert config.vocab_size is not None
|
| 123 |
+
assert config.block_size is not None
|
| 124 |
+
self.config = config
|
| 125 |
+
|
| 126 |
+
self.transformer = nn.ModuleDict(dict(
|
| 127 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
| 128 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
| 129 |
+
drop = nn.Dropout(config.dropout),
|
| 130 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
| 131 |
+
ln_f = LayerNorm(config.n_embd, bias=config.bias),
|
| 132 |
+
))
|
| 133 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 134 |
+
# with weight tying when using torch.compile() some warnings get generated:
|
| 135 |
+
# "UserWarning: functional_call was passed multiple values for tied weights.
|
| 136 |
+
# This behavior is deprecated and will be an error in future versions"
|
| 137 |
+
# not 100% sure what this is, so far seems to be harmless. TODO investigate
|
| 138 |
+
self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
|
| 139 |
+
|
| 140 |
+
# init all weights
|
| 141 |
+
self.apply(self._init_weights)
|
| 142 |
+
# apply special scaled init to the residual projections, per GPT-2 paper
|
| 143 |
+
for pn, p in self.named_parameters():
|
| 144 |
+
if pn.endswith('c_proj.weight'):
|
| 145 |
+
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
|
| 146 |
+
|
| 147 |
+
# report number of parameters
|
| 148 |
+
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
|
| 149 |
+
|
| 150 |
+
def get_num_params(self, non_embedding=True):
|
| 151 |
+
"""
|
| 152 |
+
Return the number of parameters in the model.
|
| 153 |
+
For non-embedding count (default), the position embeddings get subtracted.
|
| 154 |
+
The token embeddings would too, except due to the parameter sharing these
|
| 155 |
+
params are actually used as weights in the final layer, so we include them.
|
| 156 |
+
"""
|
| 157 |
+
n_params = sum(p.numel() for p in self.parameters())
|
| 158 |
+
if non_embedding:
|
| 159 |
+
n_params -= self.transformer.wpe.weight.numel()
|
| 160 |
+
return n_params
|
| 161 |
+
|
| 162 |
+
def _init_weights(self, module):
|
| 163 |
+
if isinstance(module, nn.Linear):
|
| 164 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 165 |
+
if module.bias is not None:
|
| 166 |
+
torch.nn.init.zeros_(module.bias)
|
| 167 |
+
elif isinstance(module, nn.Embedding):
|
| 168 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 169 |
+
|
| 170 |
+
def forward(self, idx, targets=None):
|
| 171 |
+
device = idx.device
|
| 172 |
+
b, t = idx.size()
|
| 173 |
+
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
| 174 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
|
| 175 |
+
|
| 176 |
+
# forward the GPT model itself
|
| 177 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
| 178 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
|
| 179 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
| 180 |
+
for block in self.transformer.h:
|
| 181 |
+
x = block(x)
|
| 182 |
+
x = self.transformer.ln_f(x)
|
| 183 |
+
|
| 184 |
+
if targets is not None:
|
| 185 |
+
# if we are given some desired targets also calculate the loss
|
| 186 |
+
logits = self.lm_head(x)
|
| 187 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
| 188 |
+
else:
|
| 189 |
+
# inference-time mini-optimization: only forward the lm_head on the very last position
|
| 190 |
+
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
|
| 191 |
+
loss = None
|
| 192 |
+
|
| 193 |
+
return logits, loss
|
| 194 |
+
|
| 195 |
+
def crop_block_size(self, block_size):
|
| 196 |
+
# model surgery to decrease the block size if necessary
|
| 197 |
+
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
|
| 198 |
+
# but want to use a smaller block size for some smaller, simpler model
|
| 199 |
+
assert block_size <= self.config.block_size
|
| 200 |
+
self.config.block_size = block_size
|
| 201 |
+
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
|
| 202 |
+
for block in self.transformer.h:
|
| 203 |
+
if hasattr(block.attn, 'bias'):
|
| 204 |
+
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
|
| 205 |
+
|
| 206 |
+
@classmethod
|
| 207 |
+
def from_pretrained(cls, model_type, override_args=None):
|
| 208 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
| 209 |
+
override_args = override_args or {} # default to empty dict
|
| 210 |
+
# only dropout can be overridden see more notes below
|
| 211 |
+
assert all(k == 'dropout' for k in override_args)
|
| 212 |
+
from transformers import GPT2LMHeadModel
|
| 213 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
| 214 |
+
|
| 215 |
+
# n_layer, n_head and n_embd are determined from model_type
|
| 216 |
+
config_args = {
|
| 217 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
| 218 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
| 219 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
| 220 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
| 221 |
+
}[model_type]
|
| 222 |
+
print("forcing vocab_size=50257, block_size=1024, bias=True")
|
| 223 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
| 224 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
| 225 |
+
config_args['bias'] = True # always True for GPT model checkpoints
|
| 226 |
+
# we can override the dropout rate, if desired
|
| 227 |
+
if 'dropout' in override_args:
|
| 228 |
+
print(f"overriding dropout rate to {override_args['dropout']}")
|
| 229 |
+
config_args['dropout'] = override_args['dropout']
|
| 230 |
+
# create a from-scratch initialized minGPT model
|
| 231 |
+
config = GPTConfig(**config_args)
|
| 232 |
+
model = GPT(config)
|
| 233 |
+
sd = model.state_dict()
|
| 234 |
+
sd_keys = sd.keys()
|
| 235 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
| 236 |
+
|
| 237 |
+
# init a huggingface/transformers model
|
| 238 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
| 239 |
+
sd_hf = model_hf.state_dict()
|
| 240 |
+
|
| 241 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
| 242 |
+
sd_keys_hf = sd_hf.keys()
|
| 243 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
| 244 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
| 245 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
| 246 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
| 247 |
+
# this means that we have to transpose these weights when we import them
|
| 248 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
| 249 |
+
for k in sd_keys_hf:
|
| 250 |
+
if any(k.endswith(w) for w in transposed):
|
| 251 |
+
# special treatment for the Conv1D weights we need to transpose
|
| 252 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
| 253 |
+
with torch.no_grad():
|
| 254 |
+
sd[k].copy_(sd_hf[k].t())
|
| 255 |
+
else:
|
| 256 |
+
# vanilla copy over the other parameters
|
| 257 |
+
assert sd_hf[k].shape == sd[k].shape
|
| 258 |
+
with torch.no_grad():
|
| 259 |
+
sd[k].copy_(sd_hf[k])
|
| 260 |
+
|
| 261 |
+
return model
|
| 262 |
+
|
| 263 |
+
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
|
| 264 |
+
# start with all of the candidate parameters
|
| 265 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
| 266 |
+
# filter out those that do not require grad
|
| 267 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
| 268 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
| 269 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
| 270 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
| 271 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
| 272 |
+
optim_groups = [
|
| 273 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
| 274 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
| 275 |
+
]
|
| 276 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
| 277 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
| 278 |
+
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
| 279 |
+
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
| 280 |
+
# Create AdamW optimizer and use the fused version if it is available
|
| 281 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
| 282 |
+
use_fused = fused_available and device_type == 'cuda'
|
| 283 |
+
extra_args = dict(fused=True) if use_fused else dict()
|
| 284 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
|
| 285 |
+
print(f"using fused AdamW: {use_fused}")
|
| 286 |
+
|
| 287 |
+
return optimizer
|
| 288 |
+
|
| 289 |
+
def estimate_mfu(self, fwdbwd_per_iter, dt):
|
| 290 |
+
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
|
| 291 |
+
# first estimate the number of flops we do per iteration.
|
| 292 |
+
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
|
| 293 |
+
N = self.get_num_params()
|
| 294 |
+
cfg = self.config
|
| 295 |
+
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
|
| 296 |
+
flops_per_token = 6*N + 12*L*H*Q*T
|
| 297 |
+
flops_per_fwdbwd = flops_per_token * T
|
| 298 |
+
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
|
| 299 |
+
# express our flops throughput as ratio of A100 bfloat16 peak flops
|
| 300 |
+
flops_achieved = flops_per_iter * (1.0/dt) # per second
|
| 301 |
+
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
|
| 302 |
+
mfu = flops_achieved / flops_promised
|
| 303 |
+
return mfu
|
| 304 |
+
|
| 305 |
+
@torch.no_grad()
|
| 306 |
+
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
| 307 |
+
"""
|
| 308 |
+
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
| 309 |
+
the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
| 310 |
+
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
| 311 |
+
"""
|
| 312 |
+
for _ in range(max_new_tokens):
|
| 313 |
+
# if the sequence context is growing too long we must crop it at block_size
|
| 314 |
+
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
| 315 |
+
# forward the model to get the logits for the index in the sequence
|
| 316 |
+
logits, _ = self(idx_cond)
|
| 317 |
+
# pluck the logits at the final step and scale by desired temperature
|
| 318 |
+
logits = logits[:, -1, :] / temperature
|
| 319 |
+
# optionally crop the logits to only the top k options
|
| 320 |
+
if top_k is not None:
|
| 321 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 322 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
| 323 |
+
# apply softmax to convert logits to (normalized) probabilities
|
| 324 |
+
probs = F.softmax(logits, dim=-1)
|
| 325 |
+
# sample from the distribution
|
| 326 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
| 327 |
+
# append sampled index to the running sequence and continue
|
| 328 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
| 329 |
+
|
| 330 |
+
return idx
|
test.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
try:
|
| 4 |
+
ckpt = torch.load("out/ckpt.pt", map_location="cpu")
|
| 5 |
+
print("✅ Checkpoint has been loaded successfully")
|
| 6 |
+
except Exception as e:
|
| 7 |
+
print("❌ Failed to load the checkpoint:", e)
|
train.py
ADDED
|
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
import math
|
| 5 |
+
import pickle
|
| 6 |
+
from contextlib import nullcontext
|
| 7 |
+
# note from ag: you may need to manually change the name of the trained model to match the name expected in the test.py chat.py and other scripts, also really impressive work here.
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 11 |
+
from torch.distributed import init_process_group, destroy_process_group
|
| 12 |
+
|
| 13 |
+
import tiktoken
|
| 14 |
+
from rich.traceback import install
|
| 15 |
+
install()
|
| 16 |
+
from model import GPTConfig, GPT
|
| 17 |
+
|
| 18 |
+
# -------------------------------------------------------------------------------
|
| 19 |
+
# SPECIAL TOKENS for tokenizer (edit here as needed)
|
| 20 |
+
SPECIAL_TOKENS = {'<|im_start|>', '<|im_end|>', '<|system|>', '<|user|>', '<|assistant|>', "<|im_start|>", "<|endoftext|>", "<|endofprompt|>"}
|
| 21 |
+
print(f"ℹ️ Using special tokens: {SPECIAL_TOKENS}")
|
| 22 |
+
|
| 23 |
+
# -------------------------------------------------------------------------------
|
| 24 |
+
# DEFAULT CONFIG — override via CLI or `configurator.py`
|
| 25 |
+
out_dir = 'out'
|
| 26 |
+
eval_interval = 95
|
| 27 |
+
log_interval = 1
|
| 28 |
+
eval_iters = 95
|
| 29 |
+
eval_only = False # if True, exit after first eval
|
| 30 |
+
always_save_checkpoint = True # forces save every eval
|
| 31 |
+
|
| 32 |
+
init_from = 'resume' # 'scratch' | 'resume' | 'gpt2*'
|
| 33 |
+
|
| 34 |
+
wandb_log = False
|
| 35 |
+
wandb_project = 'owt'
|
| 36 |
+
wandb_run_name= 'run' + str(time.time())
|
| 37 |
+
|
| 38 |
+
# Data / Tokenization
|
| 39 |
+
dataset = 'mydata' # subfolder under data/
|
| 40 |
+
data_file = 'lmsys_chat_1m.txt'
|
| 41 |
+
tokenizer_name = 'cl100k_base'
|
| 42 |
+
token_dtype = 'uint32' # must hold up to tokenizer.n_vocab
|
| 43 |
+
|
| 44 |
+
# Model architecture
|
| 45 |
+
n_layer = 1 # reduced to 3 layers
|
| 46 |
+
n_head = 16 # keep heads high for representation capacity
|
| 47 |
+
n_embd = 1024 # increased from 1280 → 1024 for stability and efficiency
|
| 48 |
+
dropout = 0.05 # lower dropout since underfitting may occur
|
| 49 |
+
bias = True
|
| 50 |
+
|
| 51 |
+
# Optimizer
|
| 52 |
+
learning_rate = 3e-4
|
| 53 |
+
max_iters = 20000
|
| 54 |
+
weight_decay = 0.05 # use 0.1 if batch size is large
|
| 55 |
+
beta1 = 0.9
|
| 56 |
+
beta2 = 0.98
|
| 57 |
+
grad_clip = 1.0
|
| 58 |
+
|
| 59 |
+
# LR schedule
|
| 60 |
+
decay_lr = True
|
| 61 |
+
warmup_iters = 100 # faster warmup for shallow models
|
| 62 |
+
lr_decay_iters = 10000 # align with max_iters for sharper decay
|
| 63 |
+
min_lr = 1e-5
|
| 64 |
+
|
| 65 |
+
# Batch & block sizes
|
| 66 |
+
batch_size = 4 # increase batch size if GPU RAM allows
|
| 67 |
+
gradient_accumulation_steps = 5 * 4 # adjust accordingly to match effective batch size
|
| 68 |
+
block_size = 1024 # keep same for compatibility
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# DDP
|
| 72 |
+
backend = 'nccl'
|
| 73 |
+
|
| 74 |
+
# Precision / compilation
|
| 75 |
+
device = 'cuda'
|
| 76 |
+
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'
|
| 77 |
+
compile = False # set to True on Linux with Triton installed
|
| 78 |
+
|
| 79 |
+
# Checkpointing
|
| 80 |
+
save_interval = 200 # also save every N steps
|
| 81 |
+
checkpoint_limit = None # keep only last N checkpoints (None == keep all)
|
| 82 |
+
# -------------------------------------------------------------------------------
|
| 83 |
+
|
| 84 |
+
# allow overrides via CLI / configurator.py
|
| 85 |
+
config_keys = [k for k,v in globals().items()
|
| 86 |
+
if not k.startswith('_') and isinstance(v, (int,float,bool,str,list))]
|
| 87 |
+
exec(open('configurator.py').read()) # override from CLI or config
|
| 88 |
+
config = {k: globals()[k] for k in config_keys}
|
| 89 |
+
|
| 90 |
+
# -----------------------------------------------------------------------------
|
| 91 |
+
# AUTO-PREPROCESSING: data.txt → train.bin / val.bin + meta.pkl
|
| 92 |
+
data_dir = os.path.join('data', dataset)
|
| 93 |
+
train_bin_path = os.path.join(data_dir, 'train.bin')
|
| 94 |
+
val_bin_path = os.path.join(data_dir, 'val.bin')
|
| 95 |
+
meta_path = os.path.join(data_dir, 'meta.pkl')
|
| 96 |
+
dtype_token = np.dtype(token_dtype)
|
| 97 |
+
|
| 98 |
+
if not (os.path.exists(train_bin_path) and os.path.exists(val_bin_path) and os.path.exists(meta_path)):
|
| 99 |
+
print(f"ℹ️ Preprocessing raw text from {data_file} ...")
|
| 100 |
+
raw_text = open(data_file, 'r', encoding='utf-8').read()
|
| 101 |
+
enc = tiktoken.get_encoding(tokenizer_name)
|
| 102 |
+
encode = enc.encode
|
| 103 |
+
vocab_size= enc.n_vocab
|
| 104 |
+
|
| 105 |
+
# ensure dtype can hold vocab_size
|
| 106 |
+
if np.issubdtype(dtype_token, np.integer):
|
| 107 |
+
info = np.iinfo(dtype_token)
|
| 108 |
+
if info.max < vocab_size:
|
| 109 |
+
raise ValueError(f"token_dtype={token_dtype} max={info.max} < vocab_size={vocab_size}")
|
| 110 |
+
|
| 111 |
+
tokens = np.array(encode(raw_text, allowed_special=SPECIAL_TOKENS), dtype=dtype_token)
|
| 112 |
+
n = tokens.shape[0]
|
| 113 |
+
split = int(0.9 * n)
|
| 114 |
+
train_tokens = tokens[:split]
|
| 115 |
+
val_tokens = tokens[split:]
|
| 116 |
+
|
| 117 |
+
os.makedirs(data_dir, exist_ok=True)
|
| 118 |
+
train_tokens.tofile(train_bin_path)
|
| 119 |
+
val_tokens.tofile(val_bin_path)
|
| 120 |
+
with open(meta_path, 'wb') as f:
|
| 121 |
+
pickle.dump({
|
| 122 |
+
'vocab_size': vocab_size,
|
| 123 |
+
'tokenizer': tokenizer_name,
|
| 124 |
+
'token_dtype': token_dtype,
|
| 125 |
+
'special_tokens': SPECIAL_TOKENS,
|
| 126 |
+
}, f)
|
| 127 |
+
print(f"✅ Wrote {train_bin_path} ({train_tokens.nbytes} bytes), "
|
| 128 |
+
f"{val_bin_path} ({val_tokens.nbytes} bytes), and {meta_path}")
|
| 129 |
+
|
| 130 |
+
# -----------------------------------------------------------------------------
|
| 131 |
+
# DDP or single-GPU
|
| 132 |
+
ddp = int(os.environ.get('RANK', -1)) != -1
|
| 133 |
+
if ddp:
|
| 134 |
+
init_process_group(backend=backend)
|
| 135 |
+
ddp_rank = int(os.environ['RANK'])
|
| 136 |
+
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
| 137 |
+
ddp_world_size = int(os.environ['WORLD_SIZE'])
|
| 138 |
+
device = f'cuda:{ddp_local_rank}'
|
| 139 |
+
torch.cuda.set_device(device)
|
| 140 |
+
master_process = (ddp_rank == 0)
|
| 141 |
+
seed_offset = ddp_rank
|
| 142 |
+
assert gradient_accumulation_steps % ddp_world_size == 0
|
| 143 |
+
gradient_accumulation_steps //= ddp_world_size
|
| 144 |
+
else:
|
| 145 |
+
master_process = True
|
| 146 |
+
seed_offset = 0
|
| 147 |
+
ddp_world_size = 1
|
| 148 |
+
|
| 149 |
+
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
|
| 150 |
+
print(f"ℹ️ tokens per iteration = {tokens_per_iter:,}")
|
| 151 |
+
|
| 152 |
+
if master_process:
|
| 153 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 154 |
+
torch.manual_seed(1337 + seed_offset)
|
| 155 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 156 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 157 |
+
device_type = 'cuda' if 'cuda' in device else 'cpu'
|
| 158 |
+
ptdtype = {'float32':torch.float32, 'bfloat16':torch.bfloat16, 'float16':torch.float16}[dtype]
|
| 159 |
+
ctx = nullcontext() if device_type=='cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
| 160 |
+
|
| 161 |
+
# -----------------------------------------------------------------------------
|
| 162 |
+
# BATCH LOADER
|
| 163 |
+
def get_batch(split):
|
| 164 |
+
data = np.memmap(os.path.join(data_dir, f'{split}.bin'),
|
| 165 |
+
dtype=dtype_token, mode='r')
|
| 166 |
+
ix = torch.randint(len(data) - block_size, (batch_size,))
|
| 167 |
+
x = torch.stack([torch.from_numpy(data[i:i+block_size].astype(np.int64)) for i in ix])
|
| 168 |
+
y = torch.stack([torch.from_numpy(data[i+1:i+1+block_size].astype(np.int64)) for i in ix])
|
| 169 |
+
if device_type == 'cuda':
|
| 170 |
+
x,y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
|
| 171 |
+
else:
|
| 172 |
+
x,y = x.to(device), y.to(device)
|
| 173 |
+
return x, y
|
| 174 |
+
|
| 175 |
+
# -----------------------------------------------------------------------------
|
| 176 |
+
# MODEL INIT / RESUME
|
| 177 |
+
iter_num = 0
|
| 178 |
+
best_val_loss = 1e9
|
| 179 |
+
|
| 180 |
+
meta = pickle.load(open(meta_path,'rb'))
|
| 181 |
+
vocab_size = meta['vocab_size']
|
| 182 |
+
|
| 183 |
+
model_args = dict(
|
| 184 |
+
n_layer = n_layer,
|
| 185 |
+
n_head = n_head,
|
| 186 |
+
n_embd = n_embd,
|
| 187 |
+
block_size = block_size,
|
| 188 |
+
bias = bias,
|
| 189 |
+
vocab_size = vocab_size,
|
| 190 |
+
dropout = dropout,
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
if init_from == 'scratch':
|
| 194 |
+
print("ℹ️ Initializing new model from scratch")
|
| 195 |
+
model = GPT(GPTConfig(**model_args))
|
| 196 |
+
|
| 197 |
+
elif init_from == 'resume':
|
| 198 |
+
print(f"ℹ️ Resuming from {out_dir}")
|
| 199 |
+
ckpt = torch.load(os.path.join(out_dir,'ckpt.pt'), map_location=device)
|
| 200 |
+
for k in ['n_layer','n_head','n_embd','block_size','bias','vocab_size']:
|
| 201 |
+
model_args[k] = ckpt['model_args'][k]
|
| 202 |
+
model = GPT(GPTConfig(**model_args))
|
| 203 |
+
state = ckpt['model']
|
| 204 |
+
for key in list(state.keys()):
|
| 205 |
+
if key.startswith('_orig_mod.'):
|
| 206 |
+
state[key[len('_orig_mod.'):]] = state.pop(key)
|
| 207 |
+
model.load_state_dict(state)
|
| 208 |
+
iter_num = ckpt['iter_num']
|
| 209 |
+
best_val_loss = ckpt['best_val_loss']
|
| 210 |
+
|
| 211 |
+
elif init_from.startswith('gpt2'):
|
| 212 |
+
print(f"ℹ️ Initializing from OpenAI GPT-2 weights: {init_from}")
|
| 213 |
+
override = dict(dropout=dropout)
|
| 214 |
+
model = GPT.from_pretrained(init_from, override)
|
| 215 |
+
for k in ['n_layer','n_head','n_embd','block_size','bias','vocab_size']:
|
| 216 |
+
model_args[k] = getattr(model.config, k)
|
| 217 |
+
|
| 218 |
+
if block_size < model.config.block_size:
|
| 219 |
+
model.crop_block_size(block_size)
|
| 220 |
+
model_args['block_size'] = block_size
|
| 221 |
+
|
| 222 |
+
model.to(device)
|
| 223 |
+
scaler = torch.cuda.amp.GradScaler(enabled=(dtype=='float16'))
|
| 224 |
+
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1,beta2), device_type)
|
| 225 |
+
if init_from == 'resume':
|
| 226 |
+
optimizer.load_state_dict(ckpt['optimizer'])
|
| 227 |
+
|
| 228 |
+
# -----------------------------------------------------------------------------
|
| 229 |
+
# COMPILE & DDP WRAP
|
| 230 |
+
if compile:
|
| 231 |
+
print("ℹ️ Compiling the model...")
|
| 232 |
+
model = torch.compile(model)
|
| 233 |
+
if ddp:
|
| 234 |
+
model = DDP(model, device_ids=[ddp_local_rank])
|
| 235 |
+
|
| 236 |
+
raw_model = model.module if ddp else model
|
| 237 |
+
|
| 238 |
+
# -----------------------------------------------------------------------------
|
| 239 |
+
# INITIAL CHECKPOINT at step 0
|
| 240 |
+
if master_process:
|
| 241 |
+
ckpt = {
|
| 242 |
+
'model': raw_model.state_dict(),
|
| 243 |
+
'optimizer': optimizer.state_dict(),
|
| 244 |
+
'model_args': model_args,
|
| 245 |
+
'iter_num': iter_num,
|
| 246 |
+
'best_val_loss': best_val_loss,
|
| 247 |
+
'config': config,
|
| 248 |
+
}
|
| 249 |
+
ckpt_path = os.path.join(out_dir, f'ckpt_{iter_num:06d}.pt')
|
| 250 |
+
print(f"💾 Saving initial checkpoint to {ckpt_path}")
|
| 251 |
+
torch.save(ckpt, ckpt_path)
|
| 252 |
+
|
| 253 |
+
# -----------------------------------------------------------------------------
|
| 254 |
+
# LOSS ESTIMATE
|
| 255 |
+
@torch.no_grad()
|
| 256 |
+
def estimate_loss():
|
| 257 |
+
out = {}
|
| 258 |
+
model.eval()
|
| 259 |
+
for split in ('train','val'):
|
| 260 |
+
losses = torch.zeros(eval_iters)
|
| 261 |
+
for k in range(eval_iters):
|
| 262 |
+
X,Y = get_batch(split)
|
| 263 |
+
with ctx:
|
| 264 |
+
_, loss = model(X,Y)
|
| 265 |
+
losses[k] = loss.item()
|
| 266 |
+
out[split] = losses.mean().item()
|
| 267 |
+
model.train()
|
| 268 |
+
return out
|
| 269 |
+
|
| 270 |
+
def get_lr(it):
|
| 271 |
+
if it < warmup_iters:
|
| 272 |
+
return learning_rate * (it+1) / (warmup_iters+1)
|
| 273 |
+
if it > lr_decay_iters:
|
| 274 |
+
return min_lr
|
| 275 |
+
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
| 276 |
+
coeff = 0.5 * (1 + math.cos(math.pi * decay_ratio))
|
| 277 |
+
return min_lr + coeff * (learning_rate - min_lr)
|
| 278 |
+
|
| 279 |
+
if wandb_log and master_process:
|
| 280 |
+
import wandb
|
| 281 |
+
wandb.init(project=wandb_project, name=wandb_run_name, config=config)
|
| 282 |
+
|
| 283 |
+
# -----------------------------------------------------------------------------
|
| 284 |
+
# TRAINING LOOP
|
| 285 |
+
X, Y = get_batch('train')
|
| 286 |
+
t0 = time.time()
|
| 287 |
+
local_iter = 0
|
| 288 |
+
while True:
|
| 289 |
+
lr = get_lr(iter_num) if decay_lr else learning_rate
|
| 290 |
+
for pg in optimizer.param_groups:
|
| 291 |
+
pg['lr'] = lr
|
| 292 |
+
|
| 293 |
+
if iter_num % eval_interval == 0 and master_process:
|
| 294 |
+
losses = estimate_loss()
|
| 295 |
+
print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
|
| 296 |
+
if wandb_log:
|
| 297 |
+
wandb.log({"iter":iter_num, "train/loss":losses['train'], "val/loss":losses['val'], "lr":lr})
|
| 298 |
+
|
| 299 |
+
should_save = (
|
| 300 |
+
losses['val'] < best_val_loss
|
| 301 |
+
or always_save_checkpoint
|
| 302 |
+
or (iter_num % save_interval == 0)
|
| 303 |
+
)
|
| 304 |
+
if should_save and iter_num > 0:
|
| 305 |
+
best_val_loss = min(best_val_loss, losses['val'])
|
| 306 |
+
ckpt = {
|
| 307 |
+
'model': raw_model.state_dict(),
|
| 308 |
+
'optimizer': optimizer.state_dict(),
|
| 309 |
+
'model_args': model_args,
|
| 310 |
+
'iter_num': iter_num,
|
| 311 |
+
'best_val_loss': best_val_loss,
|
| 312 |
+
'config': config,
|
| 313 |
+
}
|
| 314 |
+
ckpt_path = os.path.join(out_dir, f'ckpt_{iter_num:06d}.pt')
|
| 315 |
+
print(f"💾 Saving checkpoint to {ckpt_path}")
|
| 316 |
+
torch.save(ckpt, ckpt_path)
|
| 317 |
+
if checkpoint_limit is not None:
|
| 318 |
+
all_ckpts = sorted(f for f in os.listdir(out_dir)
|
| 319 |
+
if f.startswith('ckpt_') and f.endswith('.pt'))
|
| 320 |
+
for old in all_ckpts[:-checkpoint_limit]:
|
| 321 |
+
os.remove(os.path.join(out_dir, old))
|
| 322 |
+
|
| 323 |
+
if iter_num == 0 and eval_only:
|
| 324 |
+
break
|
| 325 |
+
|
| 326 |
+
for micro in range(gradient_accumulation_steps):
|
| 327 |
+
if ddp:
|
| 328 |
+
model.require_backward_grad_sync = (micro == gradient_accumulation_steps - 1)
|
| 329 |
+
with ctx:
|
| 330 |
+
logits, loss = model(X, Y)
|
| 331 |
+
loss = loss / gradient_accumulation_steps
|
| 332 |
+
X, Y = get_batch('train')
|
| 333 |
+
scaler.scale(loss).backward()
|
| 334 |
+
|
| 335 |
+
if grad_clip != 0.0:
|
| 336 |
+
scaler.unscale_(optimizer)
|
| 337 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
|
| 338 |
+
scaler.step(optimizer)
|
| 339 |
+
scaler.update()
|
| 340 |
+
optimizer.zero_grad(set_to_none=True)
|
| 341 |
+
|
| 342 |
+
dt = time.time() - t0
|
| 343 |
+
t0 = time.time()
|
| 344 |
+
if iter_num % log_interval == 0 and master_process:
|
| 345 |
+
lossf = loss.item() * gradient_accumulation_steps
|
| 346 |
+
if local_iter >= 5:
|
| 347 |
+
mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
|
| 348 |
+
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {mfu*100:.2f}%")
|
| 349 |
+
else:
|
| 350 |
+
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms")
|
| 351 |
+
|
| 352 |
+
iter_num += 1
|
| 353 |
+
local_iter += 1
|
| 354 |
+
if iter_num > max_iters:
|
| 355 |
+
break
|
| 356 |
+
|
| 357 |
+
if ddp:
|
| 358 |
+
destroy_process_group()
|