|
--- |
|
license: other |
|
base_model: nvidia/mit-b5 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Augmented-MIT-b5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Augmented-MIT-b5 |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0371 |
|
- Mean Iou: 0.3355 |
|
- Mean Accuracy: 0.6711 |
|
- Overall Accuracy: 0.6711 |
|
- Accuracy Background: nan |
|
- Accuracy Crack: 0.6711 |
|
- Iou Background: 0.0 |
|
- Iou Crack: 0.6711 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:| |
|
| 0.0365 | 0.14 | 1000 | 0.0446 | 0.3813 | 0.7627 | 0.7627 | nan | 0.7627 | 0.0 | 0.7627 | |
|
| 0.0114 | 0.27 | 2000 | 0.0411 | 0.3691 | 0.7381 | 0.7381 | nan | 0.7381 | 0.0 | 0.7381 | |
|
| 0.0148 | 0.41 | 3000 | 0.0400 | 0.3224 | 0.6448 | 0.6448 | nan | 0.6448 | 0.0 | 0.6448 | |
|
| 0.0134 | 0.54 | 4000 | 0.0413 | 0.2819 | 0.5638 | 0.5638 | nan | 0.5638 | 0.0 | 0.5638 | |
|
| 0.013 | 0.68 | 5000 | 0.0392 | 0.3618 | 0.7235 | 0.7235 | nan | 0.7235 | 0.0 | 0.7235 | |
|
| 0.0532 | 0.81 | 6000 | 0.0373 | 0.3355 | 0.6710 | 0.6710 | nan | 0.6710 | 0.0 | 0.6710 | |
|
| 0.0508 | 0.95 | 7000 | 0.0371 | 0.3355 | 0.6711 | 0.6711 | nan | 0.6711 | 0.0 | 0.6711 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|